Characterizing the Kathmandu Valley sediment response through strong motion recordings of the 2015 Gorkha earthquake sequence

S. Rajaure, D. Asimaki*, E. M. Thompson, S. Hough, S. Martin, J. P. Ampuero, M. R. Dhital, A. Inbal, N. Takai, M. Shigefuji, S. Bijukchhen, M. Ichiyanagi, T. Sasatani, L. Paudel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

We analyze strong motion records and high-rate GPS measurements of the M 7.8 Gorkha mainshock, M 7.3 Dolakha, and two moderate aftershock events recorded at four stations on the Kathmandu basin sediments, and one on rock-outcrop. Recordings on soil from all four events show systematic amplification relative to the rock site at multiple frequencies in the 0.1–2.5 Hz frequency range, and de-amplification of higher frequencies ( >2.5–10 Hz). The soil-to-rock amplification ratios for the M 7.8 and M 7.3 events have lower amplitude and frequency peaks relative to the ratios of the two moderate events, effects that could be suggestive of nonlinear site response. Further, comparisons to ground motion prediction equations show that 1) both soil and rock mainshock recordings were severely depleted of high frequencies, and 2) the depletion at high frequencies is not present in the aftershocks. These observations indicate that the high frequency deamplification is additionally related to characteristics of the source that are not captured by simplified ground motion prediction equations, and allude to seismic hazard analysis models being revised – possibly by treating isolated high frequency radiation sources separately from long period components to capture large magnitude near-source events such as the 2015 Gorkha mainshock.

Original languageEnglish
Pages (from-to)146-157
Number of pages12
JournalTectonophysics
Volume714-715
DOIs
StatePublished - 13 Sep 2017
Externally publishedYes

Funding

FundersFunder number
Japan Society for the Promotion of Science16K06586, 17H06215, 20K20290

    Keywords

    • Kathmandu Valley
    • Shaking intensity
    • Site effects
    • Strong motions

    Fingerprint

    Dive into the research topics of 'Characterizing the Kathmandu Valley sediment response through strong motion recordings of the 2015 Gorkha earthquake sequence'. Together they form a unique fingerprint.

    Cite this