Characterization of purine nucleotide metabolism in cultured fibroblasts with deficiency of hypoxanthine-guanine phosphoribosyltransferase and with superactivity of phosphoribosylpyrophosphate synthetase

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Cultured fibroblasts with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency exhibited acceleration of purine synthesis de novo, absence of salvage IMP synthesis from hypoxanthine, but normal total IMP synthesis. Cells with phosphoribosylpyrophosphate synthetase superactivity exhibited acceleration of both de novo and salvage IMP synthesis and increased total IMP synthesis. The study of mutant cells furnished evidence that in normal as well as mutant cells, GMP and AMP are not converted to each other in significant amounts and that these nucleotides are not degraded by nucleotidases. Purine nucleotide degradation in fibroblasts occurs mainly by dephosphorylation of IMP. In HGPRT-containing cells, salvage IMP synthesis from preformed and exogenously supplied hypoxanthine is the main source for IMP production.

Original languageEnglish
Pages (from-to)413-418
Number of pages6
JournalEnzyme
Volume25
Issue number6
DOIs
StatePublished - 1980

Fingerprint

Dive into the research topics of 'Characterization of purine nucleotide metabolism in cultured fibroblasts with deficiency of hypoxanthine-guanine phosphoribosyltransferase and with superactivity of phosphoribosylpyrophosphate synthetase'. Together they form a unique fingerprint.

Cite this