Abstract
Modern economic growth started in the West in the early nineteenth century. This survey discusses the precise connection between the Industrial Revolution and the beginnings of growth, and connects it to the intellectual and economic factors underlying the growth of useful knowledge. The connections between science, technology and human capital are re-examined, and the role of the eighteenth century Enlightenment in bringing about modern growth is highlighted. Specifically, the paper argues that the Enlightenment changed the agenda of scientific research and deepened the connections between theory and practice.
Original language | English |
---|---|
Title of host publication | Handbook of Economic Growth |
Publisher | Elsevier B.V. |
Pages | 1113-1180 |
Number of pages | 68 |
Edition | SUPPL. PART B |
ISBN (Print) | 9780444520432 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
Publication series
Name | Handbook of Economic Growth |
---|---|
Number | SUPPL. PART B |
Volume | 1 |
ISSN (Print) | 1574-0684 |
Funding
Funders | Funder number |
---|---|
National Science Foundation |
Keywords
- Industrial Revolution
- access costs
- economic growth
- technological progress
- useful knowledge
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Chapter 17 Long-Term Economic Growth and the History of Technology'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Handbook of Economic Growth. SUPPL. PART B. ed. Elsevier B.V., 2005. p. 1113-1180 (Handbook of Economic Growth; Vol. 1, No. SUPPL. PART B).
Research output: Chapter in Book/Report/Conference proceeding › Chapter › peer-review
TY - CHAP
T1 - Chapter 17 Long-Term Economic Growth and the History of Technology
AU - Mokyr, Joel
N1 - Funding Information: Economic historians like to explain economic phenomena with other economic phenomena. The Industrial Revolution, it was felt for many decades, should be explained by economic factors. Relative prices, better property rights, endowments, changes in fiscal and monetary institutions, investment, savings, exports, and changes in labor supply have all been put forward as possible explanations [for a full survey, see Mokyr (1998a) ]. Yet the essence of the Industrial Revolution was technological, and technology is knowledge. How, then, can we explain not only the famous inventions of the Industrial Revolution but also the equally portentous fact that these inventions did not peter out fairly quickly after they emerged, as had happened so often in the past? The answer has to be sought in the intellectual changes that occurred in Europe have an effect on the industrial changes of the last third of the eighteenth century. before the Industrial Revolution. These changes affected the sphere of propositional knowledge, and its interaction with the world of technology. As economic historians have known for many years, it is difficult to argue that the scientific revolution of the seventeenth century that we associate with Galileo, Descartes, Newton, and the like had a direct impact on the Industrial Revolution [McKendrick (1973) and Hall (1974)] . Few important inventions, both before and after 1800, can be directly attributed to great scientific discoveries or were dependent in any direct way on scientific expertise. The advances in physics, chemistry, biology, medicine, and other areas occurred too late to 20 20 Unlike the technologies that developed in Europe and the United States in the second half of the nineteenth century, science, in this view, had little direct guidance to offer to the Industrial Revolution [Hall (1974, p. 151)] . Shapin (1996) notes that “it appears unlikely that the ‘high theory’ of the Scientific Revolution had any substantial direct effect on economically useful technology either in the seventeenth century or in the eighteenth …historians have had great difficulty in establishing that any of these spheres of technologically or economically inspired science bore substantial fruits” (pp. 140–141, emphasis added). The scientific advances of the seventeenth century, crucial as they were to the understanding of nature, had more to do with the movement of heavenly bodies, optics, magnetism, and the classification of plants than with the motions of machines. To say that therefore they had no economic significance is an exaggeration: many of the great scientists and mathematicians of the eighteenth century wrote about mechanics and the properties of materials. After 1800 the connection becomes gradually tighter, yet the influence of science proper on some branches of production (and by no means all at that) does not become decisive until after 1870. 21 21 As Charles Gillispie has remarked in the eighteenth century, whatever the interplay between science and production may have been, “it did not consist in the application if up-to-date theory to techniques for growing and making things” [Gillispie (1980, p. 336)] . True enough, but had progress consisted only of analyzing existing procedures, identify the best of them, try to make them work as well as possible, and then standardize them, the process would eventually have run into diminishing returns and fizzled out. The marginal product of scientific knowledge proper on technology varied from industry to industry and over time. Examples of useful applications of pure scientific insights in the eighteenth century can be provided [Musson and Robinson (1969)] , but tend to be specific to a few industries. 22 22 Thus the most spectacular insight in metallurgical knowledge, the celebrated 1786 paper by Monge, Berthollet and Vandermonde that established the chemical properties of steel had no immediate technological spin-offs and was “incomprehensible except to those who already knew how to make steel” [Harris (1998, p. 220)] . Harris adds that there may have been real penalties for French steelmaking in its heavy reliance on scientists or technologists with scientific pretensions. All the same, the scientific revolution was in many ways the prelude to the intellectual developments at the base of the Industrial Revolution. The culture of science that evolved in the seventeenth century meant that observation and experience were placed in the public domain. industry, such as Claude Berthollet, Joseph Priestley, and Humphry Davy, often wanted credit, not profit. Betty Jo Dobbs (1990) , William Eamon (1990, 1994) , and more recently Paul David (2004) have pointed to the scientific revolution of the seventeenth century as the period in which “open science” emerged, when knowledge about the natural world became increasingly nonproprietary and scientific advances and discoveries were freely shared with the public at large. Thus scientific knowledge became a public good, communicated freely rather than confined to a secretive exclusive few as had been the custom in medieval Europe. The sharing of knowledge within “open science” required systematic reporting of methods and materials using a common vocabulary and consensus standards, and should be regarded as an exogenous decline in access costs, which made the propositional knowledge, such as it was, available to those who might find a use for it. Those who added to useful knowledge would be rewarded by honor, peer recognition, and fame – not a monetary reward that was in any fashion proportional to their contribution. Even those who discovered matters of significant insight to The rhetorical conventions in scientific discourse changed in the seventeenth century, with the rules of persuasions continuously shifting away from “authority” toward empirics. It increasingly demanded that empirical knowledge be tested so that useful knowledge could be both accessible and trusted. 23 23 Shapin (1994) has outlined the changes in trust and expertise in Britain during the seventeenth century associating expertise, for better or worse, with social class and locality. While the approach to science was ostensibly based on a “question authority” principle (the Royal Society’s motto was nullius in verba – on no one’s word), in fact no system of useful (or for that matter any kind of ) knowledge can exist without some mechanism that generates trust. The apparent skepticism with which scientists treated the knowledge created by their colleagues increased the trust that outsiders could have in the findings, because they could then assume – as is still true today – that these findings had been scrutinized and checked by other “experts”. Verification meant that a deliberate effort was made to make useful knowledge tighter and thus more likely to be used. It meant a willingness, rarely observed before, to discard old and venerable interpretations and theories when they could be shown to be in conflict with the evidence. Scientific method meant that in the age of Enlightenment a class of experts evolved who would often decide which technique worked best. 24 24 As Hilaire-Pérez (2000, p. 60) put it, “the value of inventions was too important an economic stake to be left to be dissipated among the many forms of recognition and amateurs: the establishment of truth became the professional responsibility of academic science”. The other crucial transformation that the Industrial Revolution inherited from the seventeenth century was the growing change in the very purpose and objective of propositional knowledge. Rather than proving some religious point, such as illustrating the wisdom of the creator, or the satisfaction of that most creative of human characteristics, curiosity, natural philosophers in the eighteenth century came increasingly under the influence of the idea that the main purpose of knowledge was to improve mankind’s material condition – that is, find to technological applications. Bacon in 1620 had famously defined technology by declaring that the control of humans over things depended on the accumulated knowledge about how nature works, since “she was only to be commanded by obeying her”. This idea was of course not entirely new, and traces of it can be found in medieval thought and even in Plato’s course, much as with National Science Foundation grant proposals today. Practical objectives in the seventeenth century were rarely the primary objective of the growth of formal science. But the changing cultural beliefs implied a gradual change in the agenda of research. Timaeus , which proposed a rationalist view of the Universe and was widely read by twelfth-century intellectuals. In the seventeenth century, however, the practice of science became increasingly permeated by the Baconian motive of material progress and constant improvement, attained by the accumulation of knowledge. 25 25 Robert K. Merton (1970 [1938], pp. ix, 87) asked rhetorically how “a cultural emphasis upon social utility as a prime, let alone an exclusive criterion for scientific work affects the rate and direction of advance in science” and noted that “science was to be fostered and nurtured as leading to the improvement of man’s lot by facilitating technological invention”. He might have added that non-epistemic goals for useful knowledge and science, that is to say, goals that transcend knowledge for its own sake and look for some application, affected not only the rate of growth of the knowledge set but even more the chances that existing knowledge will be translated into techniques that actually increase economic capabilities and welfare. The founding members of the Royal Society justified their activities by their putative usefulness to the realm. There was a self-serving element in this, of And yet, the central intellectual change in Europe before the Industrial Revolution has been oddly neglected by economic historians: the Enlightenment. Historically it bridges the Scientific and the Industrial Revolutions. Definitions of this amorphous and often contradictory historical phenomenon are many, but for the purposes of explaining the Industrial Revolution we only to examine a slice of it, which I have termed the in practice – the Royal Society, whose initial objectives were inspired by Lord Bacon. Bacon was cited approvingly by many of the leading lights of the Industrial Enlightenment, including Lavoisier, Davy, and the astronomer John Herschel Industrial Enlightenment . To be sure, some historians have noted the importance of the Enlightenment as a culture of rationality, progress, and growth through knowledge. 26 26 One of the most cogent statements is in McNeil (1987, pp. 24–25) who notes the importance of a “faith in science that brought the legacy of the Scientific Revolution to bear on industrial society …it is imperative to look at the interaction between culture and industry, between the Enlightenment and the Industrial Revolution”. Perhaps the most widely diffused Enlightenment view involved the notion that long-term social improvement was possible although not all Enlightenment philosophers believed that progress was either desirable or inevitable. Above all was the pervasive cultural belief in the Baconian notion that we can attain material progress (that is, economic growth) through controlling nature and that we can only harness nature by understanding her. Francis Bacon, indeed, is a pivotal figure in understanding the Industrial Enlightenment and its impact. His influence helped create the attitudes, institutions, and mechanisms by which new useful knowledge was generated, spread, and put to good use. Modern scholars seem agreed: Bacon was the first to regard knowledge as subject to constant growth, an entity that continuously expands and adds to itself rather than concerned with retrieving, preserving and interpreting old knowledge [Farrington (1979) and Vickers (1992, esp. pp. 496–497)] . 27 27 Bacon was pivotal in inspiring the Industrial Enlightenment. His influence on the Industrial Enlightenment can be readily ascertained by the deep admiration the encyclopédistes felt toward him, including a long article on Baconisme written by the Abbé Pestre and the credit given him by Diderot himself in his entries on Art and Encyclopédie . The Journal Encyclopédique wrote in 1756 “If this society owes everything to Chancellor Bacon, the philosopher doe not owe less to the authors of the Encyclopédie ” [cited by Kronick (1962, p. 42) ]. The great Scottish Enlightenment philosophers Dugald Stewart and Francis Jeffrey agreed on Baconian method and goals, even if they differed on some of the interpretation [Chitnis (1976, pp. 214–215)] . The understanding of nature was a social project in which the division of knowledge was similar to Adam Smith’s idea of the division of labor, another enlightenment notion. 28 28 A typical passage in this spirit was written by the British chemist and philosopher Joseph Priestley (1768, p. 7) : “If, by this means, one art or science should grow too large for an easy comprehension in a moderate space of time, a commodious subdivision will be made. Thus all knowledge will be subdivided and extended, and knowledge as Lord Bacon observes, being power , the human powers will be increased …men will make their situation in this world abundantly more easy and comfortable”. Bacon’s idea of bringing this about was through what he called a “House of Salomon” – a research academy in which teams of specialists collect data and experiment, and a higher level of scientists try to distill these into general regularities and laws. Such an institution was – at least in theory, if not always [Sargent (1999, pp. xxvii–xxviii)] . 29 29 McClellan (1985, p. 52) . It should be added that strictu sensu the Royal Society soon allowed in amateurs and dilettantes and thus became less of a pure “Baconian” institution than the French Académie Royale. Dear (1985, p. 147) notes that the Royal Society was “more of a club than a college”. Nothing of the sort, I submit, can be detected in the Ottoman Empire, India, Africa, or China. It touched only ever so lightly (and with a substantial delay) upon Iberia, Russia, and South America but in many of these areas it encountered powerful resistance and retreated. Invention, as many scholars have rightly stressed, had never been a European monopoly, and much of its technological creativity started with adopting ideas and techniques the Europeans had observed elsewhere [Mokyr (1990)] . The Enlightenment, however, provided the ideological foundation of invention, namely a belief that the understanding of nature was the key to growing control of the physical environment. Moreover, it laid out an agenda on how to achieve this control by demanding that this understanding take the form of general and widely applicable principles. With the success of this program came rising living standards, comfort and wealth. The historical result, then, was that eighteenth century Europe created the ability to break out of the ineluctable concavity and negative feedback that the limitations of knowledge and institutions had set hitherto on practically all economies. The stationary state was replaced by the steady state. It is this phenomenon rather than coal or the ghost acreage of colonies that answers Pomeranz’s (2000, p. 48) query why Chinese science and technology – which did not “stagnate” – “did not revolutionize the Chinese economy”. The Industrial Enlightenment can be viewed in part as a movement that insisted on asking not just “ as well as speed up and streamline the process of invention. which techniques work” but also “ why techniques work” – realizing that such questions held the key to continuing progress. In the terminology introduced above, the intellectuals at its center felt intuitively that constructing and widening an epistemic base for the techniques in use would lead to continuing technological progress. Scientists, engineers, chemists, medical doctors, and agricultural improvers made sincere efforts to generalize from the observations they made, to connect observed facts and regularities (including successful techniques) to the formal propositional knowledge of the time, and thus provide the techniques with wider epistemic bases. The bewildering complexity and diversity of the world of techniques in use was to be reduced to a finite set of general principles governing them. If that proved too difficult, at least catalog and classify them in such ways as to make the knowledge more organized and thus easier to access. 30 30 One thinks, of course, above all of the work of Carl Linnaeus. The lack of theory to explain living things similar to physics was acutely felt. Thus Erasmus Darwin, grandfather of the biologist and himself a charter member of the Lunar Society and an archtypical member of the British Industrial Enlightenment, complained in 1800 that Agriculture and Gardening had remained only Arts without a true theory to connect them [Porter (2000, p. 428)] . For details about Darwin, see especially McNeil (1987) and Uglow (2002) . These insights would lead to extensions, refinements, and improvements, 31 31 Somewhat similar views have been expressed recently by other scholars such as John Graham Smith (2001) and Picon (2001) . Asking such questions was of course much easier than answering them. In the longer term, however, raising the questions and developing the tools to get to the answers were essential if technical progress was not to fizzle out. 32 32 George Campbell, an important representative of the Scottish Enlightenment noted that “All art [including mechanical art or technology] is founded in science and practical skills lack complete beauty and utility when they do not originate in knowledge” [cited by Spadafora (1990, p. 31) ]. The typical enlightenment inventor did more than tinkering and trial-and-error fiddling with existing techniques: he tried to relate puzzles and challenges to whatever general principles could be found, and if necessary to formulate such principles anew. To do so, each inventor needed some mode of communication that would allow him to tap the knowledge of others. The paradigmatic example of such an inventor remains the great James Watt, whose knowledge of mathematics and physics were matched by his tight connections to the best scientific minds of his time, above all Joseph Black and Joseph Priestley. The list of slightly less famous pioneers of technology who cultivated personal connections with scientists can be made arbitrarily long. The other side of the Industrial Enlightenment had to do with the diffusion of and access to and the Derby clockmaker John Whitehurst, worked on a system of universal terms and standards, that would make French and British experiments “speak the same language” existing knowledge. The philosophes realized that, in terms of the framework outlined above, access costs were crucial and that useful knowledge should not be confined to a select few but should be disseminated as widely as possible. 33 33 Some Enlightenment thinkers believed that this was already happening in their time: the philosopher and psychologist David Hartley believed that “the diffusion of knowledge to all ranks and orders of men, to all nations, kindred and tongues and peoples …cannot be stopped but proceeds with an ever accelerating velocity” [cited by Porter (2000, p. 426) ]. Diffusion needed help, however, and much of the Industrial Enlightenment was dedicated to making access to useful knowledge easier and cheaper. 34 34 The best summary of this aspect of the Industrial Enlightenment was given by Diderot in his widely-quoted article on “Arts” in the Encyclopédie : “We need a man to rise in the academies and go down to the workshops and gather material about the [mechanical] arts to be set out in a book that will persuade the artisans to read, philosophers to think along useful lines, and the great to make at least some worthwhile use of their authority and wealth”. From the widely-felt need to rationalize and standardize weights and measures, the insistence on writing in vernacular language, to the launching of scientific societies and academies (functioning as de facto clearing houses of useful knowledge), to that most paradigmatic Enlightenment triumph, the Grande Encyclopédie , the notion of diffusion found itself at the center of attention among intellectuals. 35 35 Roche (1998, pp. 574–575) notes that “if the Encyclopédie was able to reach nearly all of society (although …peasants and most of the urban poor had access to the work only indirectly), it was because the project was broadly conceived as a work of popularization, of useful diffusion of knowledge”. The cheaper versions of the Diderot–d’Alembert masterpiece, printed in Switzerland, sold extremely well: the Geneva (quarto) editions sold around 8000 copies and the Lausanne (octavo) editions as many as 6000. Precisely because the Industrial Enlightenment was not a national or local phenomenon, it became increasingly felt that differences in language and standards became an impediment and increased access costs. Watt, James Keir, [Uglow (2002, p. 357)] . Books on science and technology were translated rather quickly, even when ostensibly Britain and France were at war with one another. Access costs depended in great measure on knowing what was known, and for that search engines were needed. The ultimate search engine of the eighteenth century was the encyclopedia. Diderot and d’Alembert’s Encyclopédie did not augur the Industrial Revolution, it did not predict factories, and had nothing to say about mechanical cotton spinning equipment or steam engines. It catered primarily to the landowning elite and the bourgeoisie of the ancien régime (notaries, lawyers, local officials) rather than specifically to an innovative industrial bourgeoisie, such as it was. It was, in many ways, a conservative document [Darnton (1979, p. 286)] . But the Industrial Enlightenment, as embodied in the Encyclopédie and similar works that were published in the eighteenth century implied a very different way of looking at technological knowledge: instead of intuition came systematic analysis; instead of mere dexterity, an attempt to attain an understanding of the principles at work; instead of secrets learned from a master, an open and accessible system of training and learning. It was also a comparatively user-friendly compilation, arranged in an accessible way, and while its subscribers may not have been mostly artisans and small manufacturers, the knowledge contained in it dripped down through a variety of leaks to those who could make use of it. 36 36 Pannabecker points out that the plates in the Encyclopédie were designed by the highly skilled Louis-Jacques Goussier who eventually became a machine designer at the Conservatoire des arts et métiers in Paris [Pannabecker (1996)] . They were meant to popularize the rational systematization of the mechanical arts to facilitate technological progress. The parish priest in St. Hubert (in Flanders) traveled to Brussels to purchase a copy, since he had heard of its emphasis on technology and was eager to learn of new ways to extract the coal resources of his land [Jacob (2001, p. 55)] . Encyclopedias and “dictionaries” were supplemented by a variety of textbooks, manuals, and compilations of techniques and devices that were somewhere in use. The biggest one was probably the massive Descriptions des arts et métiers produced by the French Académie Royale des Sciences. 37 37 The set included 13,500 pages of text and over 1,800 plates describing virtually every handicraft practiced in France at the time, and every effort was made to render the descriptions “realistic and practical” [Cole and Watts (1952, p. 3)] . Many other specialist compilations of technical and engineering data appeared. 38 38 An example is the detailed description of windmills ( Groot Volkomen Moolenboek ) published in the Netherlands as early as 1734. A copy was purchased by Thomas Jefferson and brought to North America [Davids (2001)] . Jacques-François Demachy’s l’Art du distillateur d’eaux fortes (1773) (published as a volume in the Descriptions ) is a “recipe book full of detailed descriptions of the construction of furnaces and the conduct of distillation” [John Graham Smith (2001, p. 6)] . In agriculture, meticulously compiled data collections looking at such topics as yields, crops, and cultivation methods were common. 39 39 William Ellis’ Modern Husbandman or Practice of Farming published in 1731 gave a month-by-month set of suggestions, much like Arthur Young’s most successful book, The Farmer’s Kalendar (1770). Most of these writings were empirical or instructional in nature, but a few actually tried to provide the readers with some systematic analysis of the principles at work. One of those was Francis Home’s Principles of Agriculture and Vegetation (1757). One of the great private data collection projects of the time were Arthur Young’s famed Tours of various parts of England and William Marshall’s series on Rural Economy [Goddard (1989)] . They collected hundreds of observations on farm practice in Britain and the continent. However, at times Young’s conclusions were contrary to what his own data indicated [see Allen and Ó Gráda (1988) ]. The Industrial Enlightenment realized instinctively that one of the great sources of technological stagnation was a social divide between those who knew things (“ savants ”) and those who made things (“ fabricants ”). To construct pipelines through which those two groups could communicate was at the very heart of the movement. 40 40 This point was first made by Zilsel (1942) who placed the beginning of this movement in the middle of the sixteenth century. While this may be too early for the movement to have much economic effect, the insight that technological progress occurs when intellectuals communicate with producers is central to its historical explanation. The relationship between those who possessed useful knowledge and those who might find a productive use for it was changing in eighteenth-century Europe and points to a reduction in access costs. They also served as a mechanism through which practical people with specific technical problems to solve could air their needs and thus influence the research agenda of the scientists, while at the same time absorbing what best-practice knowledge had to offer. The movement of knowledge was thus bi-directional, as seems natural to us in the twenty-first century. In early eighteenth-century Europe, however, such exchanges were still quite novel. An interesting illustration can be found in the chemical industry. Pre-Lavoisier chemistry, despite its limitations, is an excellent example of how readily than others, and so on, but as late as 1790 best-practice chemistry was incapable of helping them much some knowledge, no matter how partial or erroneous, was believed to be of use in mapping into new techniques. 41 41 Cullen lectured (in English) to his medical students, but many outsiders connected with the chemical industry audited his lectures. Cullen believed that as a philosophical chemist he had the knowledge needed to rationalize the processes of production [Donovan (1975, p. 78)] . He argued that pharmacy, agriculture, and metallurgy were all “illuminated by the principles of philosophical chemistry” and added that “wherever any art [that is, technology] requires a matter endued with any peculiar physical properties, it is chemical philosophy which informs us of the natural bodies possessed of these bodies” [cited by Brock (1992, pp. 272–273) ]. He and his colleagues worked, among others, on the problem of purifying salt (needed for the Scottish fish-preservation industry), and that of bleaching with lime, a common if problematic technique in the days before chlorine. The pre-eminent figure in this field was probably William Cullen, a Scottish physician and chemist. His work “exemplifies all the virtues that eighteenth-century chemists believed would flow from the marriage of philosophy and practice” [Donovan (1975, p. 84)] . Ironically, this marriage remained barren for many decades. In chemistry the expansion of the epistemic base and the flurry of new techniques it generated did not occur fully until the mid-nineteenth century [Fox (1998)] . Cullen’s prediction that chemical theory would yield the principles that would direct innovations in the practical arts remained, in the words of the leading expert on eighteenth-century chemistry, “more in the nature of a promissory note than a cashed-in achievement” [Golinski (1992, p. 29)] . Manufacturers needed to know why colors faded, why certain fabrics took dyes more [Keyser (1990, p. 222)] . Before the Lavoisier revolution in chemistry, it just could not be done, no matter how suitable the social climate: the minimum epistemic base simply did not exist. All the same, Cullen personifies a social demand for propositional knowledge for economic purposes. Whether or not the supply was there, his patrons and audience in the culture of the Scottish Enlightenment believed that there was a chance he could [Golinski (1988)] and put their money behind their beliefs. At times, clever and ingenious people, especially could contribute to the solution of problems. The greatest British mathematician of the eighteenth century, Colin MacLaurin, was reputed to be at hand to resolve “whatever difficulty occurred concerning the construction or perfection of machines, the working of mines, the improvement of manufactures, or the conveying of water” [Murdoch (1750, p. xxiv)] . The great French physicist René Réaumur (1683–1757) studied in great detail the properties of Chinese porcelain and the physics of iron and steel, and produced over 200 copper plates depicting the operation of workshops, machines, and tools of a range of trades [Gillispie (1980, pp. 346–347)] . But most of this promise was not realized till after 1800. To dwell on one more example, consider the development of steam power. The ambiguities of the relations between James Watt and his mentor, the Scottish scientist Joseph Black are well known. Whether or not Watt’s crucial insight of the separate condenser was due to Black’s theory of latent heat, there can be little doubt that the give-and-take between the scientific community in Glasgow and the creativity of men like Watt was essential in smoothing the path of technological progress. 42 42 Hills (1989, p. 53) explains that Black’s theory of latent heat helped Watt compute the optimal amount of water to be injected without cooling the cylinder too much. More interesting, however, was his reliance on William Cullen’s finding that in a vacuum water would boil at much lower, even tepid, temperatures, releasing steam that would ruin the vacuum in a cylinder. In some sense that piece of propositional knowledge was essential to his realization that he needed a separate condenser. In other areas, too, the discourse between those who had access to propositional knowledge and those who built new techniques was fruitful. Henry Cort, whose invention of the puddling and rolling process was no less central than Watt’s separate consenser, also consulted Joseph Black during his work. The same was true in the South of Britain. Richard Trevithick, the Cornish inventor of the high pressure engine, posed sharp questions to his scientist acquaintance Davies Gilbert (later President of the Royal Society), and received answers that supported and encouraged his work [Burton (2000, pp. 59–60)] . The physics of energy remains one of the most striking illustrations of the interactions between propositional and prescriptive knowledge. Only in the decades after 1824 did the understanding that steam was a heat engine and not a device run by pressure break through. The work of Mancunians Joule and Rankine on thermodynamics led to the development of the two cylinder compound marine steam engine and the re-introduction of steam-jacketing. It led to a different way of looking at thermal efficiency that drove home the insight that no matter how one improved a steam engine, its efficiency would always be low – thus pointing the way to internal combustion engines as a solution. Most important, the widening of the epistemic base pointed to what could not be done, and thus prevented inventors and engineers from walking into blind alleys and working on projects that were infeasible. John Ericsson’s “regenerative” engine of 1853 was still an attempt to “recycle” heat over and over again, before the ineluctable energy-accounting truths of thermodynamics had fully sunk in [Bryant (1973)] . Such advances were slow and not always monotonic. At times a little knowledge could be a dangerous thing, such as theory of latent heat which made many engineers experiment with alternative fluids whose physical properties were thought to contain less latent heat. 43 43 The example also points to the importance of tightness as a concept. In the early days of thermodynamics, there was still a lot of confusion about what was and was not feasible. Bryant (1973, p. 161) notes that “it seems strange that inventors [such as Ericsson] operating on what seems to us a pretty shaky theory were able to get financial support”. The answer is that at that early stage of the theory, an authority on heat engines could be perfectly sound on thermodynamics yet still be uncertain when faced by a complicated engine supported by “data”. Some of the most interesting enlightenment figures made a career out of specializing in building bridges between propositional and prescriptive knowledge. Among these facilitators was William Nicholson, the founder and editor of the first truly scientific journal, namely Journal of Natural Philosophy, Chemistry, and the Arts (more generally known at the time as Nicholson’s Journal ), which commenced publication in 1797. It published the works of most of the leading scientists of the time, and played the role of today’s Nature or Science , that is, to announce important discoveries in short communications. In it, leading scientists including John Dalton, Berzelius, Davy, Rumford, and George Cayley communicated their findings and opinions. 44 44 Nicholson also was a patent agent, representing other inventors, and around 1800 ran a “scientific establishment for pupils” on London’s Soho square. The school’s advertisement ran that “this institution affords a degree of practical knowledge of the sciences which is seldom acquired in the early part of life” delivering weekly lectures on natural philosophy and chemistry “illustrated by frequent exhibition and explanations of the tools, processes and operations of the useful arts and common operations of society”. Another was John Coakley Lettsom, famous for being one of London’s most successful and prosperous physicians and for liberating his family’s slaves in the Caribbean. He corresponded with many other Enlightenment figures including Benjamin Franklin, Erasmus Darwin and the noted Swiss physiologist Albrecht von Haller. He wrote about the Natural History of Tea and was a tireless advocate of the introduction of mangel wurzel into British agriculture [Porter (2000, pp. 145–147)] . A third Briton who fits this description as a mediator between the world of propositional knowledge and that of technology was Joseph Banks, one of the most distinguished and respected botanists of his time. Banks, a co-founder (with Rumford) of the Royal Institution in 1799, was a friend to George III and president of the Royal Society for 42 years, every inch an enlightenment figure, devoting his time and wealth to advance learning and to use the learning to create wealth, “an awfully English philosophe ” in Roy Porter’s (2000, p. 149) memorable phrase. As might be expected, in some cases the bridge between propositional and prescriptive knowledge occurred within the same mind: the very same people who also were contributing to science also made some critical inventions (even if the exact connection between their science and their ingenuity is not always clear). The importance of such dual or “hybrid” careers, as Eda Kranakis (1992) has termed them, is that access to the propositional knowledge that could underlie an invention is immediate, as is the feedback from technological advances to propositional knowledge. In most cases the technology shaped the propositional research as much as the other way around. The idea that those contributing to propositional knowledge should specialize in research and leave its “mapping” into technology to others had not yet ripened. Among the inventions made by people whose main fame rests on their scientific accomplishments were the chlorine bleaching process invented by the chemist Claude Berthollet, the invention of carbonated (sparkling) water and rubber erasers by Joseph Priestley, and the mining safety lamp invented by the leading scientist of his age, Humphry Davy (who also, incidentally, wrote a textbook on agricultural chemistry and discovered that a tropical plant named catechu was a useful additive to tanning). 45 45 It is unclear how much of the best-practice science was required for the safety lamp, and how much was already implied by the empirical propositional knowledge accumulated in the decades before 1815. It is significant that George Stephenson, of railway fame, designed a similar device at about the same time. Typical of the “dual career” phenomenon was Benjamin Thompson (later Count Rumford, 1753–1814), an American-born mechanical genius who was on the loyalist side during the War of Independence and later lived in exile in Bavaria, London, and Paris; he is most famous for the scientific proof that heat is not a liquid (known at the time as felt that honor and prestige were often a sufficient incentive for people to contribute to useful knowledge. He established the Rumford medal, to be awarded by the Royal Society “in recognition of an outstandingly important recent discovery in the field of thermal or optical properties of matter made by a scientist working in Europe, noting that Rumford was concerned to see recognised discoveries that tended to promote the good of mankind”. Not all scientists eschewed such profits: the brilliant Scottish aristocrat Archibald Cochrane (Earl of Dundonald) made a huge effort to render the coal tar process he patented profitable, but failed and ended up losing his fortune. Incentives were, as always, central to the actions of the figures of the Industrial Enlightenment, but we should not assume that these incentives were homogeneous and the same for all. caloric ) that flows in and out of substances. Yet Rumford was deeply interested in technology, helped establish the first steam engines in Bavaria, and invented (among other things) the drip percolator coffeemaker, a smokeless-chimney stove, and an improved oil lamp. He developed a photometer designed to measure light intensity and wrote about science’s ability to improve cooking and nutrition [Brown (1999, pp. 95–110)] . Rumford is as good a personification of the Industrial Enlightenment as one can find. Indifferent to national identity and culture, Rumford was a “Westerner” whose world spanned the entire northern Atlantic area (despite being an exile from the United States, he left much of his estate to establish a professorship at Harvard). In that respect he resembled his older compatriot inventor Benjamin Franklin, who was as celebrated in Britain and France as he was in his native Philadelphia. Rumford could map from his knowledge of natural phenomena and regularities to create things he deemed useful for mankind [Sparrow (1964, p. 162)] . 46 46 It is telling that Rumford helped found the London Royal Institute in 1799. This institute was explicitly aimed at the diffusion of useful knowledge to wider audiences through lectures. In it the great Humphry Davy and his illustrious pupil Michael Faraday gave public lectures and did their research. Like Franklin and Davy, he refused to take out a patent on any of his inventions – as a true child of the Enlightenment he was committed to the concept of open and free knowledge. 47 47 The most extreme case of a scientist insisting on open and free access to the propositional knowledge he discovered was Claude Berthollet, who readily shared his knowledge with James Watt, and declined an offer by Watt to secure a patent in Britain for the exploitation of the bleaching process [J.G. Smith (1979, p. 119)] . Instead, he The other institutional mechanism emerging during the Industrial Enlightenment to connect between those who possessed prescriptive knowledge and those who wanted to apply it was the emergence of meeting places where men of industry interacted with natural philosophers. So-called scientific societies, often known confusingly as literary and philosophical societies, sprung up everywhere in Europe. They organized lectures, symposia, public experiments, and discussion groups, in which the topics of choice were the best pumps to drain mines, or the advantages of growing clover and grass. 48 48 The most famous of these societies were the Manchester Literary and Philosophical Society (founded in 1781) and the Birmingham Lunar Society, where some of the great entrepreneurs and engineers of the time mingled with leading chemists, physicists, and medical doctors. But in many provincial cities such as Liverpool, Hull and Bradford, a great deal of similar activity took place. Most of them published some form of “proceedings”, as often meant to popularize and diffuse existing knowledge as it was to display new discoveries. Before 1780 most of these societies were informal and ad hoc, but they eventually became more formal. The British Society of Arts, founded in 1754, was a classic example of an organization that embodied many of the ideals of the Industrial Enlightenment. Its purpose was “to embolden enterprise, to enlarge science, to refine art, to improve manufacture and to extend our commerce”. Its activities included an active program of awards and prizes for successful inventors: over 6,200 prizes were granted between 1754 and 1784. 49 49 For details see Wood (1913) and Hudson and Luckhurst (1954) . The society took the view that patents were a monopoly, and that no one should be excluded from useful knowledge. It therefore ruled out (until 1845) all persons who had taken out a patent from being considered for a prize and even toyed with the idea of requiring every prize-winner to commit to never take out a patent. 50 50 Hilaire-Pérez (2000, p. 197) , Wood (1913, pp. 243–245) . It served as a communications network and clearing house for technological information, reflecting the feverish growth of supply and demand for useful knowledge. What was true for Britain was equally true for Continental countries affected by the Enlightenment. In the Netherlands, rich but increasingly technologically backward, heroic efforts were made to set up organizations that could infuse the economy with more innovativeness. In Germany, provincial academies to promote industrial, agricultural, and political progress through science were founded in all the significant German states in the eighteenth century. The Berlin Academy was founded in 1700 by the great Leibniz, and among its achievements was the discovery that sugar could be extracted from beets (1747). Around 200 societies appeared during the half-century spanning from the Seven-Years War to the climax of the Napoleonic occupation of Germany, such as the Patriotic Society founded at Hamburg in 1765 51 51 The first of these was established in Haarlem in 1752, and within a few decades the phenomenon spread (much like in England) to the provincial towns. The Scientific Society of Rotterdam known oddly as the Batavic Association for Experimental Philosophy was the most applied of all, and advocated the use of steam engines (which were purchased in the 1770s but without success). The Amsterdam Society was known as Felix Meritis and carried out experiments in physics and chemistry. These societies stimulated interest in physical and experimental sciences in the Netherlands, and they organized prize-essay contests on useful applications of natural philosophy. For decades a physicist named Benjamin Bosma gave lectures on mathematics, geography, and applied physics in Amsterdam. A Dutch Society of Chemistry founded in the early 1790s helped to convert the Dutch to the new chemistry proposed by Lavoisier [Snelders (1992)] . The Dutch high schools, known as Athenea taught mathematics, physics, astronomy, and at times counted distinguished scientists among their staff. [Lowood (1991, pp. 26–27)] . These societies, too, emphasized the welfare of the population at large and the country over private profit. Local societies supplemented and expanded the work of learned national academies. 52 52 The German local societies were private institutions, unlike state-controlled academies, which enabled them to be more open, with few conditions of entry, unlike the selective, elitist academies. They broke down social barriers, for the established structures of Old Regime society might impede useful work requiring a mixed contribution from the membership of practical experience, scientific knowledge, and political power. Unlike the more scientifically-inclined academies, they invited anyone to join, such as farmers, peasants, artisans, craftsmen, foresters, and gardeners, and attempted to improve the productivity of these occupations and solve the economic problems of all classes. Prizes rewarded tangible accomplishments, primarily in the agricultural or technical spheres. Their goal was not to advance learning like earlier academies, but to apply useful results of human knowledge, discovery and invention to practical and civic life [Lowood (1991)] . Publishing played an important role in the work of societies bent on the encouragement of invention, innovation and improvement. This reflected the emergence of open knowledge, a recognition that knowledge was a non-rivalrous good, the diffusion of which was constrained by access costs. In France, great institutions were created under royal patronage, above all the the century perhaps between 10,000 and 12,000 men belonged to learned societies that dealt at least in part with science. The Académie Royale des Sciences , created by Colbert and Louis XIV in 1666 to disseminate information and resources. 53 53 It was one of the oldest and financially best supported scientific societies of the eighteenth century, with a membership which included d’Alembert, Buffon, Clairaut, Condorcet, Fontenelle, Laplace, Lavoisier and Reaumur. It published the most prestigious and substantive scientific series of the century in its annual proceedings Histoire et Mémoires and sponsored scientific prize contests such as the Meslay prizes. It recognized achievement and rewarded success for individual discoveries and enhanced the social status of scientists, granting salaries and pensions. A broad range of scientific disciplines were covered, with mathematics and astronomy particularly well represented, as well as botany and medicine. Yet the phenomenon was nationwide: 33 official learned societies were functioning in the French provinces during the eighteenth century counting over 6,400 members. Overall, McClellan (1981, p. 547) estimates that during Académie Royale exercised a fair amount of control over the direction of French scientific development and acted as technical advisor to the monarchy. By determining what was published and exercising control over patents, the Académie became a powerful administrative body, providing scientific and technical advice to government bureaus. France, of course, had a somewhat different objective than Britain: it is often argued that the Académie linked the aspirations of the scientific community to the utilitarian concerns of the government thus creating not a Baconian society open to all comers and all disciplines but a closed academy limited primarily to Parisian scholars [McClellan (1981)] . Yet the difference between France and Britain was one of emphasis and nuance, not of essence: they shared a utilitarian optimism of mankind’s ability to create wealth through knowledge. In other parts of Europe, such as Italy, scientific societies were active in the eighteenth century [Inkster (1991, p. 35) and Cochrane (1961)] . At the level of the creation of propositional knowledge, at least, there is little evidence that the ancien régime was incapable of generating sustained progress. To summarize, then, the Industrial Revolution had intellectual preconditions that needed to be met if sustained economic growth could take place just as it had to satisfy economic and social conditions. The importance of property rights, incentives, factor markets, natural resources, law and order, market integration, and many other economic elements is not in question. But we need to realize that without understanding the changes in attitudes and beliefs of the key players in the growth of useful knowledge, the technological elements will remain inside a black box. 6
PY - 2005
Y1 - 2005
N2 - Modern economic growth started in the West in the early nineteenth century. This survey discusses the precise connection between the Industrial Revolution and the beginnings of growth, and connects it to the intellectual and economic factors underlying the growth of useful knowledge. The connections between science, technology and human capital are re-examined, and the role of the eighteenth century Enlightenment in bringing about modern growth is highlighted. Specifically, the paper argues that the Enlightenment changed the agenda of scientific research and deepened the connections between theory and practice.
AB - Modern economic growth started in the West in the early nineteenth century. This survey discusses the precise connection between the Industrial Revolution and the beginnings of growth, and connects it to the intellectual and economic factors underlying the growth of useful knowledge. The connections between science, technology and human capital are re-examined, and the role of the eighteenth century Enlightenment in bringing about modern growth is highlighted. Specifically, the paper argues that the Enlightenment changed the agenda of scientific research and deepened the connections between theory and practice.
KW - Industrial Revolution
KW - access costs
KW - economic growth
KW - technological progress
KW - useful knowledge
UR - http://www.scopus.com/inward/record.url?scp=66049122155&partnerID=8YFLogxK
U2 - 10.1016/S1574-0684(05)01017-8
DO - 10.1016/S1574-0684(05)01017-8
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
AN - SCOPUS:66049122155
SN - 9780444520432
T3 - Handbook of Economic Growth
SP - 1113
EP - 1180
BT - Handbook of Economic Growth
PB - Elsevier B.V.
ER -