TY - JOUR
T1 - Changes in the EEG spectral power during dual-task walking with aging and Parkinson’s disease
T2 - initial findings using Event-Related Spectral Perturbation analysis
AU - Possti, Daniel
AU - Fahoum, Firas
AU - Sosnik, Ronen
AU - Giladi, Nir
AU - Hausdorff, Jeffrey M.
AU - Mirelman, Anat
AU - Maidan, Inbal
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/1
Y1 - 2021/1
N2 - Background: The ability to maintain adequate motor-cognitive performance under increasing task demands depends on the regulation and coordination of neural resources. Studies have shown that such resources diminish with aging and disease. EEG spectral analysis is a method that has the potential to provide insight into neural alterations affecting motor-cognitive performance. The aim of this study was to assess changes in spectral analysis during dual-task walking in aging and disease Methods: 10 young adults, ten older adults, and ten patients with Parkinson’s disease (PD) completed an auditory oddball task while standing and while walking on a treadmill. Spectral power within four frequency bandwidths, delta (< 4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz), was calculated using Event-Related Spectral Perturbation (ERSP) analyses and compared between single task and dual task and between groups. Results: Differences in ERSP were found in all groups between the single and dual-task conditions. In response to dual-task walking, beta increased in all groups (p < 0.026), delta decreased in young adults (p = 0.03) and patients with PD (0.015) while theta increased in young adults (p = 0.028) but decreased in older adults (p = 0.02) and patients with PD (p = 0.015). Differences were seen between the young, the older adults, and the patients with PD. Conclusions: These findings are the first to show changes in the power of different frequency bands during dual-task walking with aging and disease. These specific brain modulations may reflect deficits in readiness and allocation of attention that may be responsible for the deficits in dual-task performance.
AB - Background: The ability to maintain adequate motor-cognitive performance under increasing task demands depends on the regulation and coordination of neural resources. Studies have shown that such resources diminish with aging and disease. EEG spectral analysis is a method that has the potential to provide insight into neural alterations affecting motor-cognitive performance. The aim of this study was to assess changes in spectral analysis during dual-task walking in aging and disease Methods: 10 young adults, ten older adults, and ten patients with Parkinson’s disease (PD) completed an auditory oddball task while standing and while walking on a treadmill. Spectral power within four frequency bandwidths, delta (< 4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz), was calculated using Event-Related Spectral Perturbation (ERSP) analyses and compared between single task and dual task and between groups. Results: Differences in ERSP were found in all groups between the single and dual-task conditions. In response to dual-task walking, beta increased in all groups (p < 0.026), delta decreased in young adults (p = 0.03) and patients with PD (0.015) while theta increased in young adults (p = 0.028) but decreased in older adults (p = 0.02) and patients with PD (p = 0.015). Differences were seen between the young, the older adults, and the patients with PD. Conclusions: These findings are the first to show changes in the power of different frequency bands during dual-task walking with aging and disease. These specific brain modulations may reflect deficits in readiness and allocation of attention that may be responsible for the deficits in dual-task performance.
KW - Dual-tasking
KW - EEG
KW - Gait
KW - Parkinson’s disease
UR - http://www.scopus.com/inward/record.url?scp=85088958017&partnerID=8YFLogxK
U2 - 10.1007/s00415-020-10104-1
DO - 10.1007/s00415-020-10104-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32754831
AN - SCOPUS:85088958017
SN - 0340-5354
VL - 268
SP - 161
EP - 168
JO - Journal of Neurology
JF - Journal of Neurology
IS - 1
ER -