TY - JOUR
T1 - Caspase-1 activity is required for neuronal differentiation of PC12 cells
T2 - Cross-talk between the caspase and calpain systems
AU - Vaisid, T.
AU - Kosower, N. S.
AU - Barnoy, S.
PY - 2005/4/15
Y1 - 2005/4/15
N2 - Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.
AB - Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.
KW - Calpain
KW - Calpastatin
KW - Caspase
KW - Neuronal cell differentiation
KW - PC12
UR - http://www.scopus.com/inward/record.url?scp=17444406677&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2005.01.001
DO - 10.1016/j.bbamcr.2005.01.001
M3 - מאמר
AN - SCOPUS:17444406677
VL - 1743
SP - 223
EP - 230
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
SN - 0167-4889
IS - 3
ER -