Caching Connections in Matchings

Yaniv Sadeh*, Haim Kaplan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Motivated by the desire to utilize a limited number of configurable optical switches by recent advances in Software Defined Networks (SDNs), we define an online problem which we call the Caching in Matchings problem. This problem has a natural combinatorial structure and therefore may find additional applications in theory and practice. In the Caching in Matchings problem our cache consists of k matchings of connections between servers that form a bipartite graph. To cache a connection we insert it into one of the k matchings possibly evicting at most two other connections from this matching. This problem resembles the problem known as Connection Caching [20], where we also cache connections but our only restriction is that they form a graph with bounded degree k. Our results show a somewhat surprising qualitative separation between the problems: The competitive ratio of any online algorithm for caching in matchings must depend on the size of the graph. Specifically, we give a deterministic O(nk) competitive and randomized O(n log k) competitive algorithms for caching in matchings, where n is the number of servers and k is the number of matchings. We also show that the competitive ratio of any deterministic algorithm is Ω(max(nk , k)) and of any randomized algorithm is Ω(logk2 lognk ·log k). In particular, the lower bound for randomized algorithms is Ω(log n) regardless of k, and can be as high as Ω(log2 n) if k = n1/3, for example. We also show that if we allow the algorithm to use at least 2k − 1 matchings compared to k used by the optimum then we match the competitive ratios of connection catching which are independent of n. Interestingly, we also show that even a single extra matching for the algorithm allows to get substantially better bounds.

Original languageEnglish
Title of host publication51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
EditorsKarl Bringmann, Martin Grohe, Gabriele Puppis, Ola Svensson
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773225
DOIs
StatePublished - Jul 2024
Event51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 - Tallinn, Estonia
Duration: 8 Jul 202412 Jul 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume297
ISSN (Print)1868-8969

Conference

Conference51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Country/TerritoryEstonia
CityTallinn
Period8/07/2412/07/24

Keywords

  • Caching
  • Caching in Matchings
  • Edge Coloring
  • Matchings
  • Online Algorithms

Fingerprint

Dive into the research topics of 'Caching Connections in Matchings'. Together they form a unique fingerprint.

Cite this