TY - JOUR
T1 - BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis
AU - Sreeramulu, Shivakumar
AU - Mostizky, Yana
AU - Sunitha, Sukumaran
AU - Shani, Eilon
AU - Nahum, Hadas
AU - Salomon, Dor
AU - Hayun, Liat Ben
AU - Gruetter, Christian
AU - Rauh, Daniel
AU - Ori, Naomi
AU - Sessa, Guido
PY - 2013/6
Y1 - 2013/6
N2 - Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor-like cytoplasmic kinase sub-family (RLCK-XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T-DNA insertion lines for eight BSK genes (BSK1-BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24-epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR-responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3-like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3-like kinases.
AB - Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor-like cytoplasmic kinase sub-family (RLCK-XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T-DNA insertion lines for eight BSK genes (BSK1-BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24-epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR-responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3-like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3-like kinases.
KW - Arabidopsis thaliana
KW - BSK
KW - brassinosteroid
KW - plant development
KW - plant hormones
KW - signal transduction
UR - http://www.scopus.com/inward/record.url?scp=84878814015&partnerID=8YFLogxK
U2 - 10.1111/tpj.12175
DO - 10.1111/tpj.12175
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84878814015
SN - 0960-7412
VL - 74
SP - 905
EP - 919
JO - Plant Journal
JF - Plant Journal
IS - 6
ER -