TY - JOUR
T1 - Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee (Apis mellifera)
AU - Katzav-Gozansky, Tamar
AU - Hefetz, Abraham
AU - Soroker, Victoria
N1 - Funding Information:
Acknowledgments This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities grant no. 720/04 to Abraham Hefetz. We thank Tovit Simon and Sharon Lefler for their technical help and Naomi Paz for the editorial assistance. This manuscript is contribution no. 507/06 from the Volcani Center, Israel. The experiments comply with the current laws of Israel.
PY - 2007/5
Y1 - 2007/5
N2 - Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour's gland pheromone revealed that, in vivo, workers' gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour's glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers' Dufour's gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour's gland is under dual, negative-positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become "false queens" as part of the reproductive competition.
AB - Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour's gland pheromone revealed that, in vivo, workers' gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour's glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers' Dufour's gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour's gland is under dual, negative-positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become "false queens" as part of the reproductive competition.
KW - Brain factor
KW - Dufour's gland
KW - Honeybee
KW - Pheromone biosynthesis
UR - http://www.scopus.com/inward/record.url?scp=34247354587&partnerID=8YFLogxK
U2 - 10.1007/s00114-006-0206-y
DO - 10.1007/s00114-006-0206-y
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:34247354587
SN - 0028-1042
VL - 94
SP - 407
EP - 411
JO - Science of Nature
JF - Science of Nature
IS - 5
ER -