Bounds on tradeoffs between randomness and communication complexity

Ran Canetti, Oded Goldreich

Research output: Contribution to journalConference articlepeer-review

Abstract

A quantitative investigation of the power of randomness in the context of communication complexity is initiated. The authors prove general lower bounds on the length of the random input of parties computing a function f, depending on the number of bits communicated and the deterministic communication complexity of f. Four standard models for communication complexity are considered: the random input of the parties may be shared or local, and the communication may be one-way or two-way. The bounds are shown to be tight for all the models, for all values of the deterministic communication complexity, and for all possible quantities of bits exchanged. It is shown that it is possible to reduce the number of random bits required by any protocol, without increasing the number of bits exchanged (up to a limit depending on the advantage achieved by the protocol).

Original languageEnglish
Pages (from-to)766-775
Number of pages10
JournalAnnual Symposium on Foundations of Computer Science - Proceedings
Volume2
StatePublished - 1990
Externally publishedYes
EventProceedings of the 31st Annual Symposium on Foundations of Computer Science - St. Louis, MO, USA
Duration: 22 Oct 199024 Oct 1990

Fingerprint

Dive into the research topics of 'Bounds on tradeoffs between randomness and communication complexity'. Together they form a unique fingerprint.

Cite this