# Bounds on parallel computation of multivariate polynomials

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

## Abstract

We consider the problem of fast parallel evaluation of multivariate polynomials over a field F. We define “maximal-degree” (maxdeg) of a multivariate polynomial f as maxi degxi(f(xi,⋯,xn)) i=1,⋯, n. The first lower bound result states that if a circut G evaluates a multivariate polynomial f, where its nodes are capable of performing (+,*), then the depth(G) is not less than log2[maxdeg(f)]. This result is a generalization of Kung’s[K] results for a univariate polynomial which is log2 [deg f]. In the second part, we consider the circuit G which evaluates an arbitrary polynomial f in n variables with maxdeg(f)≜dp>1. We present two algorithms that achieve better performance than the classical results of Hyafil[H] and Valiant et al. [VSBR] for most classes of multivariate polynomials. For the class of” dense” polynomials the results are closed to the theorethical bound log C, where C is the sequential complexity.The algorithms generalize Munro-Paterson[MP] method for the univariate case. It should be noticed that the bound obtained by Hyafil[H] and Valiant, Skyum, Berkowitz and Rackoff[VSBR] is not sufficiently tight for the worst-sequential case (dense multivariate polynomials) and their bound can be reduced by the factor of log d while the number of required processors is only O(C). The best improvement is achieved in a case of a”dense” multivariate polynomial. A polynomial is dense if the computation necessitates Ω(dnp) sequential steps. The simple algorithm requires only n log dp+O(n√log dp) parallel steps The second algorithm has parallel complexity, measured by the depth of the circuit, depth(G) ≤ n(log dp+β)+log n+√log dp where β ≤ √log dp. If C=Ω(dnp) then it is less than log C+√n log C where C is the number of sequential steps, and it requires only O(C) processors. The second algorithm is slightly better than the” simple” one. The improvement is achieved when β is small. The improvement of both algorithms in the parallel complexity and the number of processors with respect to Valiant is significant for most classes of multivariate polynomials.

Original language English Theory of Computing and Systems - ISTCS 1992, Israel Symposium, Proceedings Danny Dolev, Zvi Galil, Zvi Galil, Michael Rodeh Springer Verlag 147-153 7 9783540555537 https://doi.org/10.1007/bfb0035174 Published - 1992 Israel Symposium on the Theory of Computing and Systems, ISTCS 1992 - Haifa, IsraelDuration: 27 May 1992 → 28 May 1992

### Publication series

Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 601 LNCS 0302-9743 1611-3349

### Conference

Conference Israel Symposium on the Theory of Computing and Systems, ISTCS 1992 Israel Haifa 27/05/92 → 28/05/92

## Keywords

• Complexity of parallel computation
• Dense polynomial
• Design and analysis of parallel algorithms
• Maximal-degree
• Multivariate polynomials

## Fingerprint

Dive into the research topics of 'Bounds on parallel computation of multivariate polynomials'. Together they form a unique fingerprint.