TY - JOUR
T1 - Bottleneck matching in the plane
AU - Katz, Matthew J.
AU - Sharir, Micha
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/6
Y1 - 2023/6
N2 - We present a randomized algorithm that with high probability finds a bottleneck matching in a set of n=2ℓ points in the plane. The algorithm's running time is O(nω/2logn), where ω>2 is a constant such that any two n×n matrices can be multiplied in time O(nω). The state of the art in fast matrix multiplication allows us to set ω=2.3728596.
AB - We present a randomized algorithm that with high probability finds a bottleneck matching in a set of n=2ℓ points in the plane. The algorithm's running time is O(nω/2logn), where ω>2 is a constant such that any two n×n matrices can be multiplied in time O(nω). The state of the art in fast matrix multiplication allows us to set ω=2.3728596.
KW - Bottleneck matching
KW - Geometric optimization
KW - Matrix multiplication
KW - Order-k Voronoi diagram
KW - Unit disk graph
UR - http://www.scopus.com/inward/record.url?scp=85148330978&partnerID=8YFLogxK
U2 - 10.1016/j.comgeo.2023.101986
DO - 10.1016/j.comgeo.2023.101986
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85148330978
SN - 0925-7721
VL - 112
JO - Computational Geometry: Theory and Applications
JF - Computational Geometry: Theory and Applications
M1 - 101986
ER -