@inproceedings{6313889f07ab46aaac8fcb5fb82d7b6d,
title = "Boosting density estimation",
abstract = "Several authors have suggested viewing boosting as a gradient descent search for a good fit in function space. We apply gradient-based boosting methodology to the unsupervised learning problem of density estimation. We show convergence properties of the algorithm and prove that a strength of weak learnability property applies to this problem as well. We illustrate the potential of this approach through experiments with boosting Bayesian networks to learn density models.",
author = "Saharon Rosset and Eran Segal",
year = "2003",
language = "אנגלית",
isbn = "0262025507",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
booktitle = "Advances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002",
note = "16th Annual Neural Information Processing Systems Conference, NIPS 2002 ; Conference date: 09-12-2002 Through 14-12-2002",
}