TY - JOUR
T1 - Black hole mass estimation for active galactic nuclei from a new angle
AU - Baron, Dalya
AU - Ménard, Brice
N1 - Publisher Copyright:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.
PY - 2019/8/11
Y1 - 2019/8/11
N2 - The scaling relations between supermassive black holes and their host galaxy properties are of fundamental importance in the context black hole-host galaxy co-evolution throughout cosmic time. In this work, we use a novel algorithm that identifies smooth trends in complex data sets and apply it to a sample of 2000 type 1 active galactic nuclei (AGNs) spectra. We detect a sequence in emission line shapes and strengths which reveals a correlation between the narrow L([O iii])/L(H β) line ratio and the width of the broad H α. This scaling relation ties the kinematics of the gas clouds in the broad line region to the ionization state of the narrow line region, connecting the properties of gas clouds kiloparsecs away from the black hole to material gravitationally bound to it on sub-parsec scales. This relation can be used to estimate black hole masses from narrow emission lines only. It therefore enables black hole mass estimation for obscured type 2 AGNs and allows us to explore the connection between black holes and host galaxy properties for thousands of objects, well beyond the local Universe. Using this technique, we present the MBH-σ and MBH-M∗ scaling relations for a sample of about 10 000 type 2 AGNs from Sloan Digital Sky Survey. These relations are remarkably consistent with those observed for type 1 AGNs, suggesting that this new method may perform as reliably as the classical estimate used in non-obscured type 1 AGNs. These findings open a new window for studies of black hole-host galaxy co-evolution throughout cosmic time.
AB - The scaling relations between supermassive black holes and their host galaxy properties are of fundamental importance in the context black hole-host galaxy co-evolution throughout cosmic time. In this work, we use a novel algorithm that identifies smooth trends in complex data sets and apply it to a sample of 2000 type 1 active galactic nuclei (AGNs) spectra. We detect a sequence in emission line shapes and strengths which reveals a correlation between the narrow L([O iii])/L(H β) line ratio and the width of the broad H α. This scaling relation ties the kinematics of the gas clouds in the broad line region to the ionization state of the narrow line region, connecting the properties of gas clouds kiloparsecs away from the black hole to material gravitationally bound to it on sub-parsec scales. This relation can be used to estimate black hole masses from narrow emission lines only. It therefore enables black hole mass estimation for obscured type 2 AGNs and allows us to explore the connection between black holes and host galaxy properties for thousands of objects, well beyond the local Universe. Using this technique, we present the MBH-σ and MBH-M∗ scaling relations for a sample of about 10 000 type 2 AGNs from Sloan Digital Sky Survey. These relations are remarkably consistent with those observed for type 1 AGNs, suggesting that this new method may perform as reliably as the classical estimate used in non-obscured type 1 AGNs. These findings open a new window for studies of black hole-host galaxy co-evolution throughout cosmic time.
KW - galaxies: active
KW - galaxies: evolution
KW - galaxies: fundamental parameters
KW - quasars: emission lines
KW - quasars: general
KW - quasars: supermassive black holes
UR - http://www.scopus.com/inward/record.url?scp=85072263825&partnerID=8YFLogxK
U2 - 10.1093/mnras/stz1546
DO - 10.1093/mnras/stz1546
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85072263825
SN - 0035-8711
VL - 487
SP - 3404
EP - 3418
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -