TY - JOUR
T1 - Bipartite subgraphs of integer weighted graphs
AU - Alon, Noga
AU - Halperin, Eran
PY - 1998/2/15
Y1 - 1998/2/15
N2 - For every integer p > 0, let f(p) be the minimum possible value of the maximum weight of a cut in an integer weighted graph with total weight p. It is shown that for every large n and every m < n, f((n2) + m) = ⌊1/4n2⌋ + min(⌈1/2n⌉, f(m)). This supplies the precise value of f(p) for many values of p including, e.g., all p = (n2) + (m2) when n is large enough and 1/4m2 ≤ 1/2n.
AB - For every integer p > 0, let f(p) be the minimum possible value of the maximum weight of a cut in an integer weighted graph with total weight p. It is shown that for every large n and every m < n, f((n2) + m) = ⌊1/4n2⌋ + min(⌈1/2n⌉, f(m)). This supplies the precise value of f(p) for many values of p including, e.g., all p = (n2) + (m2) when n is large enough and 1/4m2 ≤ 1/2n.
UR - http://www.scopus.com/inward/record.url?scp=0038369163&partnerID=8YFLogxK
U2 - 10.1016/S0012-365X(97)00041-1
DO - 10.1016/S0012-365X(97)00041-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0038369163
SN - 0012-365X
VL - 181
SP - 19
EP - 29
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 1-3
ER -