BEURLING–CARLESON SETS, INNER FUNCTIONS AND A SEMILINEAR EQUATION

Oleg Ivrii, Artur Nicolau

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets. For a positive singular measure µ on the unit circle, let Sµ denote the singular inner function with singular measure µ. In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of Sµ in the Nevanlinna class N, area conditions on level sets of Sµ and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that µ lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership ofSµ in the Hardy space Hp, membership of Sµ in the Besov space Bp and (1−p)-Beurling–Carleson sets and give a number of examples which show that our results are optimal. Finally, we show that measures that live on countable unions of α-Beurling–Carleson sets are almost in bijection with nearly maximal solutions of 1u = up · χu>0 when p?> 3 and α = (p − 3)/(p − 1).

Original languageEnglish
Pages (from-to)2585-2618
Number of pages34
JournalAnalysis and PDE
Volume17
Issue number7
DOIs
StatePublished - 2024

Funding

FundersFunder number
Spanish Research Agency
Israel Science Foundation3134/21
Generalitat de Catalunya2021 SGR 00071
Ministerio de Ciencia e InnovaciónPID2021-123151NB-I00

    Keywords

    • Beurling–Carleson set
    • Roberts decomposition
    • inner function
    • nearly maximal solution

    Fingerprint

    Dive into the research topics of 'BEURLING–CARLESON SETS, INNER FUNCTIONS AND A SEMILINEAR EQUATION'. Together they form a unique fingerprint.

    Cite this