TY - GEN
T1 - Benign Underfitting of Stochastic Gradient Descent
AU - Koren, Tomer
AU - Livni, Roi
AU - Mansour, Yishay
AU - Sherman, Uri
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - We study to what extent may stochastic gradient descent (SGD) be understood as a “conventional” learning rule that achieves generalization performance by obtaining a good fit to training data. We consider the fundamental stochastic convex optimization framework, where (one pass, without-replacement) SGD is classically known to minimize the population risk at rate O(1/√n), and prove that, surprisingly, there exist problem instances where the SGD solution exhibits both empirical risk and generalization gap of Ω(1). Consequently, it turns out that SGD is not algorithmically stable in any sense, and its generalization ability cannot be explained by uniform convergence or any other currently known generalization bound technique for that matter (other than that of its classical analysis). We then continue to analyze the closely related with-replacement SGD, for which we show that an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate. Finally, we interpret our main results in the context of without-replacement SGD for finite-sum convex optimization problems, and derive upper and lower bounds for the multi-epoch regime that significantly improve upon previously known results.
AB - We study to what extent may stochastic gradient descent (SGD) be understood as a “conventional” learning rule that achieves generalization performance by obtaining a good fit to training data. We consider the fundamental stochastic convex optimization framework, where (one pass, without-replacement) SGD is classically known to minimize the population risk at rate O(1/√n), and prove that, surprisingly, there exist problem instances where the SGD solution exhibits both empirical risk and generalization gap of Ω(1). Consequently, it turns out that SGD is not algorithmically stable in any sense, and its generalization ability cannot be explained by uniform convergence or any other currently known generalization bound technique for that matter (other than that of its classical analysis). We then continue to analyze the closely related with-replacement SGD, for which we show that an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate. Finally, we interpret our main results in the context of without-replacement SGD for finite-sum convex optimization problems, and derive upper and lower bounds for the multi-epoch regime that significantly improve upon previously known results.
UR - http://www.scopus.com/inward/record.url?scp=85163216040&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85163216040
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -