Benchmark problems for phase retrieval

Veit Elser, Ti Yen Lan, Tamir Bendory

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


In recent years, the mathematical and algorithmic aspects of the phase retrieval problem have received considerable attention. Many papers in this area mention crystallography as a principal application. In crystallography, the signal to be recovered is periodic and comprised of atomic distributions arranged homogeneously in the unit cell of the crystal. The crystallographic problem is both the leading application and one of the hardest forms of phase retrieval. We have constructed a graded set of benchmark problems for evaluating algorithms that perform this type of phase retrieval. The data, publicly available online from, is provided in an easily interpretable format. We also propose a simple and unambiguous suc-cess/failure criterion based on the actual needs in crystallography. Baseline runtimes were obtained with an iterative algorithm that is similar but more transparent than those used in crystallography. Empirically, the runtimes grow exponentially with respect to a new hardness parameter: the sparsity of the signal autocorrelation. We also review the algorithms used by the leading software packages. This set of benchmark problems, we hope, will encourage the development of new algorithms for the phase retrieval problem in general, and crystallography in particular.

Original languageEnglish
Pages (from-to)2429-2455
Number of pages27
JournalSIAM Journal on Imaging Sciences
Issue number4
StatePublished - 2018
Externally publishedYes


FundersFunder number
U.S. Department of EnergyDE-SC0005827


    • Benchmark problems
    • Crystallography
    • Periodic signals
    • Phase retrieval
    • Reconstruction algorithms
    • Sparsity

    Cite this