TY - CHAP
T1 - Behavioral animal models of antipsychotic drug actions
AU - Peleg-Raibstein, Daria
AU - Feldon, Joram
AU - Meyer, Urs
PY - 2012
Y1 - 2012
N2 - Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a schizophrenia-like brain over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.
AB - Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a schizophrenia-like brain over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.
KW - Animal model
KW - Antipsychotic drugs
KW - Cognition
KW - Negative symptoms
KW - Positive symptoms
KW - Psychosis
KW - Schizophrenia
UR - http://www.scopus.com/inward/record.url?scp=84870173625&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-25761-2_14
DO - 10.1007/978-3-642-25761-2_14
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
C2 - 23129339
AN - SCOPUS:84870173625
SN - 9783642257605
T3 - Handbook of Experimental Pharmacology
SP - 361
EP - 406
BT - Current Antipsychotics
PB - Springer Science and Business Media, LLC
ER -