TY - JOUR
T1 - Behavior of single-scale hard small-x processes in QCD near the black disk limit
AU - Blok, B.
AU - Frankfurt, L.
PY - 2006
Y1 - 2006
N2 - We argue that at sufficiently small Bjorken x where pQCD amplitudes rapidly increase with energy and violate probability conservation the shadowing effects in the single-scale small x hard QCD processes can be described by an effective quantum field theory of interacting quasiparticles-perturbative QCD ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant ensures the hierarchy among many-quasiparticle interactions evaluated within the physical vacuum and, in particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the divergency of the perturbative QCD series at sufficiently small x. We solve the equations of motion of the effective field theory within the WKB approximation and find the physical vacuum and the transitions between the false (perturbative) and physical vacua. Classical solutions which dominate transitions between the false and physical vacua are kinks that cannot be decomposed into perturbative series over the powers of αs. These kinks lead to color inflation and the Bose-Einstein condensation of quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance of the "massless" particles-phonons. It is explained that phonons are relevant for the black disk behavior of cross sections of small x processes. The Bose-Einstein condensation of the ladders produces a color network occupying a "macroscopic" longitudinal volume. We discuss briefly the possible detection of new QCD effects. We outline albeit briefly the relationship between the small x hard QCD processes and the coherent critical phenomena.
AB - We argue that at sufficiently small Bjorken x where pQCD amplitudes rapidly increase with energy and violate probability conservation the shadowing effects in the single-scale small x hard QCD processes can be described by an effective quantum field theory of interacting quasiparticles-perturbative QCD ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant ensures the hierarchy among many-quasiparticle interactions evaluated within the physical vacuum and, in particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the divergency of the perturbative QCD series at sufficiently small x. We solve the equations of motion of the effective field theory within the WKB approximation and find the physical vacuum and the transitions between the false (perturbative) and physical vacua. Classical solutions which dominate transitions between the false and physical vacua are kinks that cannot be decomposed into perturbative series over the powers of αs. These kinks lead to color inflation and the Bose-Einstein condensation of quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance of the "massless" particles-phonons. It is explained that phonons are relevant for the black disk behavior of cross sections of small x processes. The Bose-Einstein condensation of the ladders produces a color network occupying a "macroscopic" longitudinal volume. We discuss briefly the possible detection of new QCD effects. We outline albeit briefly the relationship between the small x hard QCD processes and the coherent critical phenomena.
UR - http://www.scopus.com/inward/record.url?scp=33644966014&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.73.054008
DO - 10.1103/PhysRevD.73.054008
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33644966014
SN - 1550-7998
VL - 73
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 5
M1 - 054008
ER -