Bearing estimation in a Ricean channel-Part I: Inherent accuracy limitations

Garold Fuks*, Jason Goldberg, Hagit Messer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


This paper considers the problem of estimating the bearing of a single, far-field source using passive sensor array measurements when the spatial propagation channel formed between the source and the array may be described as "Ricean." Such a channel consists of a direct, line-of-sight (LOS) component as well as an indirect, nonline-of-sight (NLOS) component due to scattering. A parametric description of the resulting spatial propagation channel is presented. A related source-bearing estimation problem is formulated, and the associated Cramér-Rao lower bound (CRLB) is evaluated. The bound is used to study the relationship among the bearing estimation problems under the Ricean (LOS/NLOS), point source (LOS), and scattered source (NLOS) models. Exact and simplified approximate forms of the bound are derived explicitly in terms of the point source and scattered source CRLBs. A number of properties of the bound are presented. In particular, it is shown that the bound is monotonically decreasing function of Rice factor (the ratio of the LOS component power to the NLOS component power). This implies that for a given signal-to-noise ratio (SNR), the CRLB is bounded from below by the point source bound and bounded from above by the scattered source bound. It is also shown that given a NLOS component, the addition of a LOS component necessarily makes the bearing estimation problem easier. On the other hand, given an LOS component, the addition of an NLOS component does not necessarily make the bearing estimation problem easier (and may even make it harder). Last, the CRLB for estimation of the Rice factor is considered, and some of its properties are studied.

Original languageEnglish
Pages (from-to)925-937
Number of pages13
JournalIEEE Transactions on Signal Processing
Issue number5
StatePublished - May 2001


Dive into the research topics of 'Bearing estimation in a Ricean channel-Part I: Inherent accuracy limitations'. Together they form a unique fingerprint.

Cite this