Bass-SIR model for diffusion of new products in social networks

Research output: Contribution to journalArticlepeer-review


We consider the diffusion of new products in social networks, where consumers who adopt the product can later "recover" and stop influencing others to adopt the product. We show that the diffusion is not described by the susceptible-infected-recovered (SIR) model, but rather by a new model, the Bass-SIR model, which combines the Bass model for diffusion of new products with the SIR model for epidemics. The phase transition of consumers from nonadopters to adopters is described by a nonstandard Kolmogorov-Johnson-Mehl-Avrami model, in which clusters growth is limited by adopters' recovery. Therefore, diffusion in the Bass-SIR model only depends on the local structure of the social network, but not on the average distance between consumers. Consequently, unlike the SIR model, a small-worlds structure has a negligible effect on the diffusion. Moreover, unlike the SIR model, there is no threshold value above which the diffusion will peter out. Surprisingly, diffusion on scale-free networks is nearly identical to that on Cartesian ones.

Original languageEnglish
Article number032305
JournalPhysical Review E
Issue number3
StatePublished - 7 Sep 2016


Dive into the research topics of 'Bass-SIR model for diffusion of new products in social networks'. Together they form a unique fingerprint.

Cite this