TY - JOUR
T1 - Ballistic penetration analysis of soft laminated composites using sublaminate mesoscale modeling
AU - Chricker, Raz
AU - Mustacchi, Shaul
AU - Massarwa, Eyass
AU - Eliasi, Rami
AU - Aboudi, Jacob
AU - Haj-Ali, Rami
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021
Y1 - 2021
N2 - Ballistic impact mitigation requires the development of protective armor applications from composite material systems with good energy absorption and penetration resistance against threats, e.g., metallic projectiles. In this aim, high-strength and high-stiffness soft fibrous composite materials (such as ultra-high molecular weight polyethylene—UHMWPE) are often used. The high specific strength feature is one of the main reasons for using these soft composite systems in ballistic impact applications. In the present investigation, experimental and computational finite element (FE) studies were carried out to investigate the ballistic behaviors of these soft layered composite targets. To this end, a new FE multi-scale analysis framework for ballistic simulations is offered. The proposed analysis presents a new meso-scale sublaminate material model, which is applied to Dyneema® cross-ply laminate in order to predict its behavior under ballistic impact. The sublaminate model is implemented within an explicit dynamic FE code to simulate the continuum response in each element. The sublaminate model assumes a through-thickness periodic stacking of repeated cross-ply configuration. In addition, a cohesive layer is introduced in the sublaminate model in order to simulate the delamination effect leading to the subsequent degradation and deletion of the elements. This new approach eliminates the widely used costly computational approach of using explicit cohesive elements installed at pre-specified potential delamination paths between the layers. Furthermore, in-plane damage modes (such as fiber tensile, and out-of-plane shearing) are also accounted for by employing failure criteria and strain-softening. The obtained quantitative results of ballistic impact simulations show good correlation when compared to a relatively wide range of experiments. Moreover, the simulations include evidence of capturing the main energy absorption mechanisms under high-velocity impact. The proposed modeling approach can be used as a useful armor design tool.
AB - Ballistic impact mitigation requires the development of protective armor applications from composite material systems with good energy absorption and penetration resistance against threats, e.g., metallic projectiles. In this aim, high-strength and high-stiffness soft fibrous composite materials (such as ultra-high molecular weight polyethylene—UHMWPE) are often used. The high specific strength feature is one of the main reasons for using these soft composite systems in ballistic impact applications. In the present investigation, experimental and computational finite element (FE) studies were carried out to investigate the ballistic behaviors of these soft layered composite targets. To this end, a new FE multi-scale analysis framework for ballistic simulations is offered. The proposed analysis presents a new meso-scale sublaminate material model, which is applied to Dyneema® cross-ply laminate in order to predict its behavior under ballistic impact. The sublaminate model is implemented within an explicit dynamic FE code to simulate the continuum response in each element. The sublaminate model assumes a through-thickness periodic stacking of repeated cross-ply configuration. In addition, a cohesive layer is introduced in the sublaminate model in order to simulate the delamination effect leading to the subsequent degradation and deletion of the elements. This new approach eliminates the widely used costly computational approach of using explicit cohesive elements installed at pre-specified potential delamination paths between the layers. Furthermore, in-plane damage modes (such as fiber tensile, and out-of-plane shearing) are also accounted for by employing failure criteria and strain-softening. The obtained quantitative results of ballistic impact simulations show good correlation when compared to a relatively wide range of experiments. Moreover, the simulations include evidence of capturing the main energy absorption mechanisms under high-velocity impact. The proposed modeling approach can be used as a useful armor design tool.
KW - Ballistic experiments
KW - Delamination
KW - Finite element analysis
KW - Impact behavior
KW - Layered structures
UR - http://www.scopus.com/inward/record.url?scp=85104501561&partnerID=8YFLogxK
U2 - 10.3390/jcs5010021
DO - 10.3390/jcs5010021
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85104501561
SN - 2504-477X
VL - 5
JO - Journal of Composites Science
JF - Journal of Composites Science
IS - 1
M1 - 21
ER -