TY - JOUR
T1 - Automorphisms and real structures for a Π-symmetric super-Grassmannian
AU - Vishnyakova, Elizaveta
AU - Borovoi, Mikhail
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/4/15
Y1 - 2024/4/15
N2 - Any complex-analytic vector bundle E admits naturally defined homotheties ϕα, α∈C⁎, i.e. ϕα is the multiplication of a local section by a complex number α. We investigate the question when such automorphisms can be lifted to a non-split supermanifold corresponding to E. Further, we compute the automorphism supergroup of a Π-symmetric super-Grassmannian ΠGrn,k, and, using Galois cohomology, we classify the real structures on ΠGrn,k and compute the corresponding supermanifolds of real points.
AB - Any complex-analytic vector bundle E admits naturally defined homotheties ϕα, α∈C⁎, i.e. ϕα is the multiplication of a local section by a complex number α. We investigate the question when such automorphisms can be lifted to a non-split supermanifold corresponding to E. Further, we compute the automorphism supergroup of a Π-symmetric super-Grassmannian ΠGrn,k, and, using Galois cohomology, we classify the real structures on ΠGrn,k and compute the corresponding supermanifolds of real points.
KW - Automorphism supergroup
KW - Real structure
KW - Super-Grassmannian
UR - http://www.scopus.com/inward/record.url?scp=85183529597&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2023.12.033
DO - 10.1016/j.jalgebra.2023.12.033
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85183529597
SN - 0021-8693
VL - 644
SP - 232
EP - 286
JO - Journal of Algebra
JF - Journal of Algebra
ER -