Automated triage of covid-19 from various lung abnormalities using chest ct features

Dor Amran, Maayan Frid-Adar, Nimrod Sagie, Jannette Nassar, Asher Kabakovitch, Hayit Greenspan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

outbreak of COVID-19 has led to a global effort to decelerate the pandemic spread. For this purpose chest computed-tomography (CT) based screening and diagnosis of COVID-19 suspected patients is utilized, either as a support or replacement to reverse transcription-polymerase chain reaction (RT-PCR) test. In this paper, we propose a fully automated AI based system that takes as input chest CT scans and triages COVID-19 cases. More specifically, we produce multiple descriptive features, including lung and infections statistics, texture, shape and location, to train a machine learning based classifier that distinguishes between COVID-19 and other lung abnormalities (including community acquired pneumonia). We evaluated our system on a dataset of 2191 CT cases and demonstrated a robust solution with 90.8% sensitivity at 85.4% specificity with 94.0% ROC-AUC. In addition, we present an elaborated feature analysis and ablation study to explore the importance of each feature.

Original languageEnglish
Title of host publication2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI 2021
PublisherIEEE Computer Society
Pages155-159
Number of pages5
ISBN (Electronic)9781665412469
DOIs
StatePublished - 13 Apr 2021
Event18th IEEE International Symposium on Biomedical Imaging, ISBI 2021 - Nice, France
Duration: 13 Apr 202116 Apr 2021

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2021-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference18th IEEE International Symposium on Biomedical Imaging, ISBI 2021
Country/TerritoryFrance
CityNice
Period13/04/2116/04/21

Keywords

  • CNN
  • COVID-19
  • CT
  • Chest
  • Machine learning

Fingerprint

Dive into the research topics of 'Automated triage of covid-19 from various lung abnormalities using chest ct features'. Together they form a unique fingerprint.

Cite this