Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease

Yael Gruper, Anette S.B. Wolff*, Liad Glanz, Frantisek Spoutil, Mihaela Cuida Marthinussen, Adriana Osickova, Yonatan Herzig, Yael Goldfarb, Goretti Aranaz-Novaliches, Jan Dobeš, Noam Kadouri, Osher Ben-Nun, Amit Binyamin, Bar Lavi, Tal Givony, Razi Khalaila, Tom Gome, Tomáš Wald, Blanka Mrazkova, Carmel SochenMarine Besnard, Shifra Ben-Dor, Ester Feldmesser, Elisaveta M. Orlova, Csaba Hegedűs, István Lampé, Tamás Papp, Szabolcs Felszeghy, Radislav Sedlacek, Esti Davidovich, Noa Tal, Dror S. Shouval, Raanan Shamir, Carole Guillonneau, Zsuzsa Szondy, Knut E.A. Lundin, Radim Osicka, Jan Prochazka, Eystein S. Husebye, Jakub Abramson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation—amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5–7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.

Original languageEnglish
Pages (from-to)653-662
Number of pages10
JournalNature
Volume624
Issue number7992
DOIs
StatePublished - 21 Dec 2023

Fingerprint

Dive into the research topics of 'Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease'. Together they form a unique fingerprint.

Cite this