Audio de-identification: A new entity recognition task

Ido Cohn, Itay Laish, Genady Beryozkin, Gang Li, Izhak Shafran, Idan Szpektor, Tzvika Hartman, Avinatan Hassidim, Yossi Matias

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Named Entity Recognition (NER) has been mostly studied in the context of written text. Specifically, NER is an important step in de-identification (de-ID) of medical records, many of which are recorded conversations between a patient and a doctor. In such recordings, audio spans with personal information should be redacted, similar to the redaction of sensitive character spans in de-ID for written text. The application of NER in the context of audio de-identification has yet to be fully investigated. To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected. We then present our pipeline for this task, which involves Automatic Speech Recognition (ASR), NER on the transcript text, and text-to-audio alignment. Finally, we introduce a novel metric for audio de-ID and a new evaluation benchmark consisting of a large labeled segment of the Switchboard and Fisher audio datasets and detail our pipeline's results on it.

Original languageEnglish
Title of host publicationIndustry Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages197-204
Number of pages8
ISBN (Electronic)9781950737147
StatePublished - 2019
Externally publishedYes
Event2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019 - Minneapolis, United States
Duration: 2 Jun 20197 Jun 2019

Publication series

NameNAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference
Volume2

Conference

Conference2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019
Country/TerritoryUnited States
CityMinneapolis
Period2/06/197/06/19

Fingerprint

Dive into the research topics of 'Audio de-identification: A new entity recognition task'. Together they form a unique fingerprint.

Cite this