Abstract
Normal labor and delivery are dependent on the presence of regular and effective contractions of the uterine myometrium. The mechanisms responsible for the initiation and maintenance of adequate and synchronized uterine activity that are necessary for labor and delivery result from a complex interplay of hormonal, mechanical, and electrical factors that have not yet been fully elucidated. Monitoring uterine activity during term labor and in suspected preterm labor is an important component of obstetrical care because cases of inadequate and excessive uterine activity can be associated with substantial maternal and neonatal morbidity and mortality. Inadequate labor progress is a common challenge encountered in intrapartum care, with labor dystocia being the most common indication for cesarean deliveries performed during labor. Hereafter, an accurate assessment of uterine activity during labor can assist in the management of protracted labor by diagnosing inadequate uterine activity and facilitating the titration of uterotonic medications before a trial of labor is prematurely terminated. Conversely, the ability to diagnose unwanted or excessive uterine activity is also critical in cases of threatened preterm labor, tachysystole, or patients undergoing a trial of labor after cesarean delivery. Knowledge of uterine activity in these cases may guide the use of tocolytic medications or raise suspicion of uterine rupture. Current diagnostic capabilities are less than optimal, hindering the medical management of term and preterm labor. Currently, different methods exist for evaluating uterine activity during labor, including manual palpation, external tocodynamometry, intrauterine pressure monitoring, and electrical uterine myometrial activity tracing. Legacy uterine monitoring techniques have advantages and limitations. External tocodynamometry is the most widespread tool in clinical use owing to its noninvasive nature and its ability to time contractions against the fetal heart rate monitor. However, it does not provide information regarding the strength of uterine contractions and is limited by signal loss with maternal movements. Conversely, the intrauterine pressure catheter quantifies the strength of uterine contractions; however, its use is limited by its invasiveness, risk for complications, and limited additive value in all but few clinical scenarios. New monitoring methods are being used, such as electrical uterine monitoring, which is noninvasive and does not require ruptured membranes. Electrical uterine monitoring has yet to be incorporated into common clinical practice because of lack of access to this technology, its high cost, and the need for appropriate training of clinical staff. Further work needs to be done to increase the accessibility and implementation of this technique by experts, and further research is needed to implement new practical and useful methods. This review describes current clinical tools for uterine activity assessment during labor and discusses their advantages and shortcomings. The review also summarizes current knowledge regarding novel technologies for monitoring uterine contractions that are not yet in widespread use, but are promising and could help improve our understanding of the physiology of labor, delivery, and preterm labor, and ultimately enhance patient care.
Original language | English |
---|---|
Pages (from-to) | S1209-S1221 |
Journal | American Journal of Obstetrics and Gynecology |
Volume | 228 |
Issue number | 5 |
DOIs | |
State | Published - May 2023 |
Keywords
- Montevideo units
- action potentials
- contraction frequency
- contraction intensity
- contractions
- dysfunctional labor
- electrical activity
- electrical uterine monitoring
- electro hysterogram
- external tocodynamometry
- gap junctions
- hysterography
- intrauterine pressure catheter
- labor augmentation
- labor induction
- labor progression
- manual palpation
- myometrium
- preterm labor
- tachysystole
- uterine activity