Assessing the Sensitivity of Global Maize Price to Regional Productions Using Statistical and Machine Learning Methods

Rotem Zelingher*, David Makowski, Thierry Brunelle

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Agricultural price shocks strongly affect farmers' income and food security. It is therefore important to understand and anticipate their origins and occurrence, particularly for the world's main agricultural commodities. In this study, we assess the impacts of yearly variations in regional maize productions and yields on global maize prices using several statistical and machine-learning (ML) methods. Our results show that, of all regions considered, Northern America is by far the most influential. More specifically, our models reveal that a yearly yield gain of +8% in Northern America negatively impacts the global maize price by about –7%, while a decrease of –0.1% is expected to increase global maize price by more than +7%. Our classification models show that a small decrease in the maize yield in Northern America can inflate the probability of maize price increase on the global scale. The maize productions in the other regions have a much lower influence on the global price. Among the tested methods, random forest and gradient boosting perform better than linear models. Our results highlight the interest of ML in analyzing global prices of major commodities and reveal the strong sensitivity of maize prices to small variations of maize production in Northern America.

Original languageEnglish
Article number655206
JournalFrontiers in Sustainable Food Systems
Volume5
DOIs
StatePublished - 2 Jun 2021
Externally publishedYes

Keywords

  • agricultural commodity prices
  • food-security
  • machine learning
  • maize
  • regional productions

Fingerprint

Dive into the research topics of 'Assessing the Sensitivity of Global Maize Price to Regional Productions Using Statistical and Machine Learning Methods'. Together they form a unique fingerprint.

Cite this