TY - JOUR
T1 - Assessing GPT-4 multimodal performance in radiological image analysis
AU - Brin, Dana
AU - Sorin, Vera
AU - Barash, Yiftach
AU - Konen, Eli
AU - Glicksberg, Benjamin S.
AU - Nadkarni, Girish N.
AU - Klang, Eyal
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2025/4
Y1 - 2025/4
N2 - Objectives: This study aims to assess the performance of a multimodal artificial intelligence (AI) model capable of analyzing both images and textual data (GPT-4V), in interpreting radiological images. It focuses on a range of modalities, anatomical regions, and pathologies to explore the potential of zero-shot generative AI in enhancing diagnostic processes in radiology. Methods: We analyzed 230 anonymized emergency room diagnostic images, consecutively collected over 1 week, using GPT-4V. Modalities included ultrasound (US), computerized tomography (CT), and X-ray images. The interpretations provided by GPT-4V were then compared with those of senior radiologists. This comparison aimed to evaluate the accuracy of GPT-4V in recognizing the imaging modality, anatomical region, and pathology present in the images. Results: GPT-4V identified the imaging modality correctly in 100% of cases (221/221), the anatomical region in 87.1% (189/217), and the pathology in 35.2% (76/216). However, the model’s performance varied significantly across different modalities, with anatomical region identification accuracy ranging from 60.9% (39/64) in US images to 97% (98/101) and 100% (52/52) in CT and X-ray images (p < 0.001). Similarly, pathology identification ranged from 9.1% (6/66) in US images to 36.4% (36/99) in CT and 66.7% (34/51) in X-ray images (p < 0.001). These variations indicate inconsistencies in GPT-4V’s ability to interpret radiological images accurately. Conclusion: While the integration of AI in radiology, exemplified by multimodal GPT-4, offers promising avenues for diagnostic enhancement, the current capabilities of GPT-4V are not yet reliable for interpreting radiological images. This study underscores the necessity for ongoing development to achieve dependable performance in radiology diagnostics. Clinical relevance statement: Although GPT-4V shows promise in radiological image interpretation, its high diagnostic hallucination rate (> 40%) indicates it cannot be trusted for clinical use as a standalone tool. Improvements are necessary to enhance its reliability and ensure patient safety. Key Points: GPT-4V’s capability in analyzing images offers new clinical possibilities in radiology. GPT-4V excels in identifying imaging modalities but demonstrates inconsistent anatomy and pathology detection. Ongoing AI advancements are necessary to enhance diagnostic reliability in radiological applications.
AB - Objectives: This study aims to assess the performance of a multimodal artificial intelligence (AI) model capable of analyzing both images and textual data (GPT-4V), in interpreting radiological images. It focuses on a range of modalities, anatomical regions, and pathologies to explore the potential of zero-shot generative AI in enhancing diagnostic processes in radiology. Methods: We analyzed 230 anonymized emergency room diagnostic images, consecutively collected over 1 week, using GPT-4V. Modalities included ultrasound (US), computerized tomography (CT), and X-ray images. The interpretations provided by GPT-4V were then compared with those of senior radiologists. This comparison aimed to evaluate the accuracy of GPT-4V in recognizing the imaging modality, anatomical region, and pathology present in the images. Results: GPT-4V identified the imaging modality correctly in 100% of cases (221/221), the anatomical region in 87.1% (189/217), and the pathology in 35.2% (76/216). However, the model’s performance varied significantly across different modalities, with anatomical region identification accuracy ranging from 60.9% (39/64) in US images to 97% (98/101) and 100% (52/52) in CT and X-ray images (p < 0.001). Similarly, pathology identification ranged from 9.1% (6/66) in US images to 36.4% (36/99) in CT and 66.7% (34/51) in X-ray images (p < 0.001). These variations indicate inconsistencies in GPT-4V’s ability to interpret radiological images accurately. Conclusion: While the integration of AI in radiology, exemplified by multimodal GPT-4, offers promising avenues for diagnostic enhancement, the current capabilities of GPT-4V are not yet reliable for interpreting radiological images. This study underscores the necessity for ongoing development to achieve dependable performance in radiology diagnostics. Clinical relevance statement: Although GPT-4V shows promise in radiological image interpretation, its high diagnostic hallucination rate (> 40%) indicates it cannot be trusted for clinical use as a standalone tool. Improvements are necessary to enhance its reliability and ensure patient safety. Key Points: GPT-4V’s capability in analyzing images offers new clinical possibilities in radiology. GPT-4V excels in identifying imaging modalities but demonstrates inconsistent anatomy and pathology detection. Ongoing AI advancements are necessary to enhance diagnostic reliability in radiological applications.
KW - Artificial intelligence
KW - Computed tomography (x-ray)
KW - Diagnostic imaging
KW - Radiology
KW - Ultrasonography
UR - http://www.scopus.com/inward/record.url?scp=85202738977&partnerID=8YFLogxK
U2 - 10.1007/s00330-024-11035-5
DO - 10.1007/s00330-024-11035-5
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39214893
AN - SCOPUS:85202738977
SN - 0938-7994
VL - 35
SP - 1959
EP - 1965
JO - European Radiology
JF - European Radiology
IS - 4
M1 - e231114
ER -