TY - JOUR
T1 - Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition
AU - Borovok, Natalia
AU - Iram, Natalie
AU - Zikich, Dragoslav
AU - Ghabboun, Jamal
AU - Livshits, Gideon I.
AU - Porath, Danny
AU - Kotlyar, Alexander
N1 - Funding Information:
This work was supported by the EC through contracts IST-2001-38951 (‘DNA-Based Nanowires’) and FP6-029192 (‘DNA-Based Nanodevices’). Funding to pay the Open Access publication charges for this article was provided by a European Grant FP6-029192 (‘DNA-Based Nanodevices’).
PY - 2008
Y1 - 2008
N2 - We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin-biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.
AB - We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin-biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.
UR - http://www.scopus.com/inward/record.url?scp=50849123417&partnerID=8YFLogxK
U2 - 10.1093/nar/gkn459
DO - 10.1093/nar/gkn459
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:50849123417
SN - 0305-1048
VL - 36
SP - 5050
EP - 5060
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 15
ER -