Approximating Max NAE-k-SAT by anonymous local search

Aiyong Xian, Kaiyuan Zhu, Daming Zhu*, Lianrong Pu, Hong Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


A clause is not-all-equal satisfied if it has at least one literal assigned with true and one literal assigned with false. Max NAE-SAT is given by a boolean variable set U and a clause set C, asks to find an assignment of U, such that the number of not-all-equal satisfied clauses in C is maximized. Max NAE-SAT turns into Max NAE-k-SAT if each clause contains exactly k literals. Local search has long been used in various SAT solvers. However, little has been done on local search to approximate Max NAE-k-SAT. Moreover, it is still open for what a quantitative bound could Max NAE-k-SAT be approximated to, at best. In this paper, we propose a local search algorithm which can approximate Max NAE-k-SAT to [formula presented] for each fixed k≥2. Then we show that Max NAE-k-SAT cannot be approximated within [formula presented] in polynomial time, if P≠NP. The algorithm for Max NAE-k-SAT can be extended to approximate Max NAE-SAT where each clause contains at least k literals to [formula presented]. Using the algorithm for Max NAE-SAT where each clause contains at least k literals, we present a new algorithm to approximate Max-SAT where each clause contains at least k literals to [formula presented].

Original languageEnglish
Pages (from-to)54-63
Number of pages10
JournalTheoretical Computer Science
StatePublished - 2 Jan 2017
Externally publishedYes


  • Algorithm
  • Complexity
  • Local search
  • Performance ratio
  • Satisfiability


Dive into the research topics of 'Approximating Max NAE-k-SAT by anonymous local search'. Together they form a unique fingerprint.

Cite this