TY - GEN
T1 - Approximate modularity revisited
AU - Feige, Uriel
AU - Feldman, Michal
AU - Talgam-Cohen, Inbal
N1 - Publisher Copyright:
© 2017 Copyright held by the owner/author(s).
PY - 2017/6/19
Y1 - 2017/6/19
N2 - Set functions with convenient properties (such as submodularity) appear in application areas of current interest, such as algorithmic game theory, and allow for improved optimization algorithms. It is natural to ask (e.g., in the context of data driven optimization) how robust such properties are, and whether small deviations from them can be tolerated. We consider two such questions in the important special case of linear set functions. One question that we address is whether any set function that approximately satisfies the modularity equation (linear functions satisfy the modularity equation exactly) is close to a linear function. The answer to this is positive (in a precise formal sense) as shown by Kalton and Roberts [1983] (and further improved by Bondarenko, Prymak, and Radchenko [2013]). We revisit their proof idea that is based on expander graphs, and provide significantly stronger upper bounds by combining it with new techniques. Furthermore, we provide improved lower bounds for this problem. Another question that we address is that of how to learn a linear function h that is close to an approximately linear function f, while querying the value of f on only a small number of sets. We present a deterministic algorithm that makes only linearly many (in the number of items) nonadaptive queries, by this improving over a previous algorithm of Chierichetti, Das, Dasgupta and Kumar [2015] that is randomized and makes more than a quadratic number of queries. Our learning algorithm is based on a Hadamard transform.
AB - Set functions with convenient properties (such as submodularity) appear in application areas of current interest, such as algorithmic game theory, and allow for improved optimization algorithms. It is natural to ask (e.g., in the context of data driven optimization) how robust such properties are, and whether small deviations from them can be tolerated. We consider two such questions in the important special case of linear set functions. One question that we address is whether any set function that approximately satisfies the modularity equation (linear functions satisfy the modularity equation exactly) is close to a linear function. The answer to this is positive (in a precise formal sense) as shown by Kalton and Roberts [1983] (and further improved by Bondarenko, Prymak, and Radchenko [2013]). We revisit their proof idea that is based on expander graphs, and provide significantly stronger upper bounds by combining it with new techniques. Furthermore, we provide improved lower bounds for this problem. Another question that we address is that of how to learn a linear function h that is close to an approximately linear function f, while querying the value of f on only a small number of sets. We present a deterministic algorithm that makes only linearly many (in the number of items) nonadaptive queries, by this improving over a previous algorithm of Chierichetti, Das, Dasgupta and Kumar [2015] that is randomized and makes more than a quadratic number of queries. Our learning algorithm is based on a Hadamard transform.
KW - Learning
KW - Linear functions
KW - Set functions
UR - http://www.scopus.com/inward/record.url?scp=85024382816&partnerID=8YFLogxK
U2 - 10.1145/3055399.3055476
DO - 10.1145/3055399.3055476
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85024382816
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1028
EP - 1041
BT - STOC 2017 - Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
A2 - McKenzie, Pierre
A2 - King, Valerie
A2 - Hatami, Hamed
PB - Association for Computing Machinery
T2 - 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
Y2 - 19 June 2017 through 23 June 2017
ER -