Approximate modularity revisited

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Set functions with convenient properties (such as submodularity) appear in application areas of current interest, such as algorithmic game theory, and allow for improved optimization algorithms. It is natural to ask (e.g., in the context of data driven optimization) how robust such properties are, and whether small deviations from them can be tolerated. We consider two such questions in the important special case of linear set functions. One question that we address is whether any set function that approximately satisfies the modularity equation (linear functions satisfy the modularity equation exactly) is close to a linear function. The answer to this is positive (in a precise formal sense) as shown by Kalton and Roberts [1983] (and further improved by Bondarenko, Prymak, and Radchenko [2013]). We revisit their proof idea that is based on expander graphs, and provide significantly stronger upper bounds by combining it with new techniques. Furthermore, we provide improved lower bounds for this problem. Another question that we address is that of how to learn a linear function h that is close to an approximately linear function f, while querying the value of f on only a small number of sets. We present a deterministic algorithm that makes only linearly many (in the number of items) nonadaptive queries, by this improving over a previous algorithm of Chierichetti, Das, Dasgupta and Kumar [2015] that is randomized and makes more than a quadratic number of queries. Our learning algorithm is based on a Hadamard transform.

Original languageEnglish
Title of host publicationSTOC 2017 - Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
EditorsPierre McKenzie, Valerie King, Hamed Hatami
PublisherAssociation for Computing Machinery
Pages1028-1041
Number of pages14
ISBN (Electronic)9781450345286
DOIs
StatePublished - 19 Jun 2017
Event49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 - Montreal, Canada
Duration: 19 Jun 201723 Jun 2017

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
VolumePart F128415
ISSN (Print)0737-8017

Conference

Conference49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
Country/TerritoryCanada
CityMontreal
Period19/06/1723/06/17

Keywords

  • Learning
  • Linear functions
  • Set functions

Fingerprint

Dive into the research topics of 'Approximate modularity revisited'. Together they form a unique fingerprint.

Cite this