Abstract
Recent findings demonstrate strong links between abnormalities in circadian rhythms and sleep and the etiology, pathophysiology and treatment of major affective disorders. Further exploration of these interactions requires the development, identification and utilization of good and predictive animal models. The biology and behavior related to circadian rhythms are significantly different in diurnal and nocturnal rodents. Accordingly, it is possible that exploring the interactions between these mechanisms and affective change in diurnal animals may be advantageous. Recent studies demonstrate that diurnal fat sand rats and Nile grass rats show depression-like behavior when maintained under short-photoperiod (SP) conditions compared with animals maintained under neutral photoperiod (NP) conditions. Moreover, these behaviors were ameliorated after treatment with bright light. The present study further explores the possible utility of sand rats as animal models by testing the effects of antidepressants on the SP-induced depression-like behaviors of sand rats. Sand rats maintained in SP or NP conditions for 3 weeks were treated subchronically (5 injections) with the clinically effective antidepressant bupropion, and their behavior was tested in a number of depression-related tests. Results show that antidepressant treatment reverses the effects of SP conditions in the forced swim test, but that neither SP conditions nor antidepressants influenced sweet solution preference. These results partly support the validity of the sand rat model, but suggest that not all tests that were validated in nocturnal laboratory rodents can be applied to other rodent species and that additional tests should be applied to further explore the validity of the model.
Original language | English |
---|---|
Pages (from-to) | 191-196 |
Number of pages | 6 |
Journal | Neuropsychobiology |
Volume | 63 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2011 |
Keywords
- Circadian rhythms
- Depression
- Nontraditional models
- Photoperiod
- Psammomys obesus