Anothera pproximationt heoretic characterization of inner product spaces

Dan Amir, Frank Deutsch

Research output: Contribution to journalArticlepeer-review

Abstract

A normed space E is an inner product space if and only if for every 2-dimensional subspace V and every segment I ⊂ V, the corresponding metric projections satisfy the commutative property PIPV = PyPI.

Original languageEnglish
Pages (from-to)99-102
Number of pages4
JournalProceedings of the American Mathematical Society
Volume71
Issue number1
DOIs
StatePublished - Aug 1978

Keywords

  • Hilbert space
  • Inner product space
  • Metric projection

Fingerprint

Dive into the research topics of 'Anothera pproximationt heoretic characterization of inner product spaces'. Together they form a unique fingerprint.

Cite this