@inproceedings{322ef5e5f3714c039195f1082a336a67,
title = "Annotator Consensus Prediction for Medical Image Segmentation with Diffusion Models",
abstract = "A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-expert prediction using diffusion models. Our method leverages the diffusion-based approach to incorporate information from multiple annotations and fuse it into a unified segmentation map that reflects the consensus of multiple experts. We evaluate the performance of our method on several datasets of medical segmentation annotated by multiple experts and compare it with the state-of-the-art methods. Our results demonstrate the effectiveness and robustness of the proposed method. Our code is publicly available at https://github.com/tomeramit/Annotator-Consensus-Prediction.",
keywords = "Diffusion Model, Image segmentation, Multi annotator",
author = "Tomer Amit and Shmuel Shichrur and Tal Shaharabany and Lior Wolf",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.; 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 ; Conference date: 08-10-2023 Through 12-10-2023",
year = "2023",
doi = "10.1007/978-3-031-43901-8_52",
language = "אנגלית",
isbn = "9783031439001",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "544--554",
editor = "Hayit Greenspan and Hayit Greenspan and Anant Madabhushi and Parvin Mousavi and Septimiu Salcudean and James Duncan and Tanveer Syeda-Mahmood and Russell Taylor",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings",
address = "גרמניה",
}