TY - GEN
T1 - Anisotropic regularization for inverse problems with application to the wiener filter with gaussian and impulse noise
AU - Feigin, Micha
AU - Sochen, Nir
PY - 2009
Y1 - 2009
N2 - Most inverse problems require a regularization term on the data. The classic approach for the variational formulation is to use the L 2 norm on the data gradient as a penalty term. This however acts as a low pass filter and thus is not good at preserving edges in the reconstructed data. In this paper we propose a novel approach whereby an anisotropic regularization is used to preserve object edges. This is achieved by calculating the data gradient over a Riemannian manifold instead of the standard Euclidean space using the Laplace-Beltrami approach. We also employ a modified fidelity term to handle impulse noise. This approach is applicable to both scalar and vector valued images. The result is demonstrate via the Wiener filter with several approaches for minimizing the functional including a novel GSVD based spectral approach applicable to functionals containing gradient based features.
AB - Most inverse problems require a regularization term on the data. The classic approach for the variational formulation is to use the L 2 norm on the data gradient as a penalty term. This however acts as a low pass filter and thus is not good at preserving edges in the reconstructed data. In this paper we propose a novel approach whereby an anisotropic regularization is used to preserve object edges. This is achieved by calculating the data gradient over a Riemannian manifold instead of the standard Euclidean space using the Laplace-Beltrami approach. We also employ a modified fidelity term to handle impulse noise. This approach is applicable to both scalar and vector valued images. The result is demonstrate via the Wiener filter with several approaches for minimizing the functional including a novel GSVD based spectral approach applicable to functionals containing gradient based features.
UR - http://www.scopus.com/inward/record.url?scp=69049119538&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-02256-2_27
DO - 10.1007/978-3-642-02256-2_27
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:69049119538
SN - 3642022553
SN - 9783642022555
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 319
EP - 330
BT - Scale Space and Variational Methods in Computer Vision - Second International Conference, SSVM 2009, Proceedings
T2 - 2nd International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2009
Y2 - 1 June 2009 through 5 June 2009
ER -