TY - GEN
T1 - AND testing and robust judgement aggregation
AU - Filmus, Yuval
AU - Lifshitz, Noam
AU - Minzer, Dor
AU - Mossel, Elchanan
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/6/8
Y1 - 2020/6/8
N2 - A function fg¶{0,1}n→ {0,1} is called an approximate AND-homomorphism if choosing x,ygn uniformly at random, we have that f(xg§ y) = f(x)g§ f(y) with probability at least 1-ϵ, where xg§ y = (x1g§ y1,...,xng§ yn). We prove that if fg¶ {0,1}n → {0,1} is an approximate AND-homomorphism, then f is -close to either a constant function or an AND function, where (ϵ) → 0 as ϵ→ 0. This improves on a result of Nehama, who proved a similar statement in which δdepends on n. Our theorem implies a strong result on judgement aggregation in computational social choice. In the language of social choice, our result shows that if f is ϵ-close to satisfying judgement aggregation, then it is (ϵ)-close to an oligarchy (the name for the AND function in social choice theory). This improves on Nehama's result, in which δdecays polynomially with n. Our result follows from a more general one, in which we characterize approximate solutions to the eigenvalue equation f = λ g, where is the downwards noise operator f(x) = y[f(x g§ y)], f is [0,1]-valued, and g is {0,1}-valued. We identify all exact solutions to this equation, and show that any approximate solution in which f and λ g are close is close to an exact solution.
AB - A function fg¶{0,1}n→ {0,1} is called an approximate AND-homomorphism if choosing x,ygn uniformly at random, we have that f(xg§ y) = f(x)g§ f(y) with probability at least 1-ϵ, where xg§ y = (x1g§ y1,...,xng§ yn). We prove that if fg¶ {0,1}n → {0,1} is an approximate AND-homomorphism, then f is -close to either a constant function or an AND function, where (ϵ) → 0 as ϵ→ 0. This improves on a result of Nehama, who proved a similar statement in which δdepends on n. Our theorem implies a strong result on judgement aggregation in computational social choice. In the language of social choice, our result shows that if f is ϵ-close to satisfying judgement aggregation, then it is (ϵ)-close to an oligarchy (the name for the AND function in social choice theory). This improves on Nehama's result, in which δdecays polynomially with n. Our result follows from a more general one, in which we characterize approximate solutions to the eigenvalue equation f = λ g, where is the downwards noise operator f(x) = y[f(x g§ y)], f is [0,1]-valued, and g is {0,1}-valued. We identify all exact solutions to this equation, and show that any approximate solution in which f and λ g are close is close to an exact solution.
KW - Analysis of Boolean Functions
KW - Property Testing
UR - http://www.scopus.com/inward/record.url?scp=85086757451&partnerID=8YFLogxK
U2 - 10.1145/3357713.3384254
DO - 10.1145/3357713.3384254
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85086757451
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 222
EP - 233
BT - STOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
A2 - Makarychev, Konstantin
A2 - Makarychev, Yury
A2 - Tulsiani, Madhur
A2 - Kamath, Gautam
A2 - Chuzhoy, Julia
PB - Association for Computing Machinery
T2 - 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020
Y2 - 22 June 2020 through 26 June 2020
ER -