TY - JOUR
T1 - An improved sub-packetization bound for minimum storage regenerating codes
AU - Goparaju, Sreechakra
AU - Tamo, Itzhak
AU - Calderbank, Robert
PY - 2014/5
Y1 - 2014/5
N2 - Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. In particular, an (n, κ) maximum distance separable (MDS) code stores k symbols in n disks such that the overall system is tolerant to a failure of up to n ? k disks. However, access to at least k disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length The MDS array codes have the potential to repair a single erasure using a fraction 1/(n ?κ) of data stored in the remaining disks. We introduce new methods of analysis, which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given (n, κ), what is the minimum vector-length or subpacketization factor - required to achieve this optimal fraction? For exact recovery of systematic disks in an MDS code of low redundancy, i.e., κ/n > 1/2, the best known explicit codes have a subpacketization factor , which is exponential in k. It has been conjectured that for a fixed number of parity nodes, it is in fact necessary for to be exponential in k. In this paper, we provide a new log-squared converse bound on k for a given -, and prove that k ≤ 2 log2 (logδ +1), for an arbitrary number of parity nodes r = n ? k, where δ = r/(r ? 1).
AB - Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. In particular, an (n, κ) maximum distance separable (MDS) code stores k symbols in n disks such that the overall system is tolerant to a failure of up to n ? k disks. However, access to at least k disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length The MDS array codes have the potential to repair a single erasure using a fraction 1/(n ?κ) of data stored in the remaining disks. We introduce new methods of analysis, which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given (n, κ), what is the minimum vector-length or subpacketization factor - required to achieve this optimal fraction? For exact recovery of systematic disks in an MDS code of low redundancy, i.e., κ/n > 1/2, the best known explicit codes have a subpacketization factor , which is exponential in k. It has been conjectured that for a fixed number of parity nodes, it is in fact necessary for to be exponential in k. In this paper, we provide a new log-squared converse bound on k for a given -, and prove that k ≤ 2 log2 (logδ +1), for an arbitrary number of parity nodes r = n ? k, where δ = r/(r ? 1).
KW - distributed storage
KW - error correction codes
KW - interference alignment
KW - sub-packetization
UR - http://www.scopus.com/inward/record.url?scp=84899625009&partnerID=8YFLogxK
U2 - 10.1109/TIT.2014.2309000
DO - 10.1109/TIT.2014.2309000
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84899625009
SN - 0018-9448
VL - 60
SP - 2770
EP - 2779
JO - IEEE Transactions on Information Theory
JF - IEEE Transactions on Information Theory
IS - 5
M1 - 6750093
ER -