An improved algorithm for CIOQ switches

Yossi Azar*, Yossi Richter

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

10 Scopus citations

Abstract

The problem of maximizing the weighted throughput in various switching settings has been intensively studied recently through competitive analysis. To date, the most general model that has been investigated is the standard CIOQ (Combined Input and Output Queued) switch architecture with internal fabric speedup S ≥ 1. CIOQ switches, that comprise the backbone of packet routing networks, are N × N switches controlled by a switching policy that incorporates two components: admission control and scheduling. An admission control strategy is essential to determine the packets stored in the FIFO queues in input and output ports, while the scheduling policy conducts the transfer of packets through the internal fabric, from input ports to output ports. The online problem of maximizing the total weighted throughput of CIOQ switches was recently investigated by Kesselman and Rosen in [12]. They presented two different online algorithms for the general problem that achieve non-constant competitive ratios (linear in either the speedup or the number of distinct values or logarithmic in the value range). We introduce the first constant-competitive algorithm for the general case of the problem, with arbitrary speedup and packet values. Specifically, our algorithm is 9.47-competitive, and is also simple and easy to implement.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsSusanne Albers, Tomasz Radzik
PublisherSpringer Verlag
Pages65-76
Number of pages12
ISBN (Print)3540230254, 9783540230250
DOIs
StatePublished - 2004

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3221
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'An improved algorithm for CIOQ switches'. Together they form a unique fingerprint.

Cite this