TY - JOUR
T1 - An extremal problem for sets with applications to graph theory
AU - Alon, Noga
PY - 1985/9
Y1 - 1985/9
N2 - Let X1, ..., Xn be n disjoint sets. For 1 ≤ i ≤ n and 1 ≤ j ≤ h let Aij and Bij be subsets of Xi that satisfy |Aij| ≤ ri and |Bij| ≤ si for 1 ≤ i ≤ n, 1 ≤ j ≤ h, (∪i Aij) ∩ (∪i Bij) = {circled division slash} for 1 ≤ j ≤ h, (∪i Aij) ∩ (∪i Bil) ≠ {circled division slash} for 1 ≤ j < l ≤ h. We prove that h≤ Π i=1 n ri+si ri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).
AB - Let X1, ..., Xn be n disjoint sets. For 1 ≤ i ≤ n and 1 ≤ j ≤ h let Aij and Bij be subsets of Xi that satisfy |Aij| ≤ ri and |Bij| ≤ si for 1 ≤ i ≤ n, 1 ≤ j ≤ h, (∪i Aij) ∩ (∪i Bij) = {circled division slash} for 1 ≤ j ≤ h, (∪i Aij) ∩ (∪i Bil) ≠ {circled division slash} for 1 ≤ j < l ≤ h. We prove that h≤ Π i=1 n ri+si ri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).
UR - http://www.scopus.com/inward/record.url?scp=0442330916&partnerID=8YFLogxK
U2 - 10.1016/0097-3165(85)90048-2
DO - 10.1016/0097-3165(85)90048-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0442330916
SN - 0097-3165
VL - 40
SP - 82
EP - 89
JO - Journal of Combinatorial Theory - Series A
JF - Journal of Combinatorial Theory - Series A
IS - 1
ER -