Abstract
We study the empirical behavior of trading agents participating in the Ad-Auction game of the Trading Agent Competition (TAC-AA). Aiming to understand the applicability of optimal trading strategies in synthesized environments to real-life settings, we investigate the robustness of the agents to deviations from the game's specified environment. Our results indicate that most agents, especially the top-scoring ones, are surprisingly robust. In addition, using the game logs, we derive for each agent a strategic fingerprint and show that it almost uniquely identifies it. Finally, we show that although the Machine Learning modeling in TAC-AA is inherently inaccurate, further improvement in modeling accuracy is likely to have only a limited contribution to the overall performance of TAC-AA agents.
Original language | English |
---|---|
Pages | 1253-1254 |
Number of pages | 2 |
State | Published - 2013 |
Event | 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 - Saint Paul, MN, United States Duration: 6 May 2013 → 10 May 2013 |
Conference
Conference | 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 |
---|---|
Country/Territory | United States |
City | Saint Paul, MN |
Period | 6/05/13 → 10/05/13 |
Keywords
- Agents
- Learning
- Robustness