TY - JOUR
T1 - Amylin-Aβ oligomers at atomic resolution using molecular dynamics simulations
T2 - A link between Type 2 diabetes and Alzheimer's disease
AU - Baram, Michal
AU - Atsmon-Raz, Yoav
AU - Ma, Buyong
AU - Nussinov, Ruth
AU - Miller, Yifat
N1 - Publisher Copyright:
© the Owner Societies 2016.
PY - 2016/1/28
Y1 - 2016/1/28
N2 - Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
AB - Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
UR - http://www.scopus.com/inward/record.url?scp=84955440506&partnerID=8YFLogxK
U2 - 10.1039/c5cp03338a
DO - 10.1039/c5cp03338a
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84955440506
SN - 1463-9076
VL - 18
SP - 2330
EP - 2338
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 4
ER -