Alternatives and preferences for materials in use for pressure ulcer prevention: An experiment-reinforced literature review

Amit Gefen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Alleviation of localised, sustained tissue loads and microclimate management are the most critical performance criteria for materials in use for pressure ulcer prevention, such as in prophylactic dressings, padding or cushioning. These material performance criteria can be evaluated by calculating the extents of matching between the material stiffness (elastic modulus) and the thermal conductivity of the protective dressing, padding or cushioning with the corresponding properties of native skin, separately or in combination. Based on these bioengineering performance criteria, hydrocolloids, which are commonly used for prophylaxis of medical device-related pressure ulcers, exhibit poor stiffness matching with skin. In addition, there is remarkable variability in the modulus and thermal conductivity matching levels of different material types used for pressure ulcer prevention, however, it appears that among the materials tested, hydrogels provide the optimal matching with skin, followed by gels and silicone foams. The stiffness matching for hydrocolloids appears to be inferior even to that of gauze. This article provides quantitative performance criteria and metrics for these evaluations, and grades commonly used material types to biomechanically guide clinicians and industry with regards to the selection of dressings for pressure ulcer prevention, both due to bodyweight forces and as a result of applied medical devices.

Original languageEnglish
Pages (from-to)1797-1809
Number of pages13
JournalInternational Wound Journal
Issue number7
StatePublished - Nov 2022


  • biomechanical properties
  • laboratory testing
  • padding and cushioning
  • pressure injury
  • prophylactic dressings


Dive into the research topics of 'Alternatives and preferences for materials in use for pressure ulcer prevention: An experiment-reinforced literature review'. Together they form a unique fingerprint.

Cite this