TY - JOUR
T1 - Altered Ca2+ handling and myofilament desensitization underlie cardiomyocyte performance in normothermic and hyperthermic heat-acclimated rat hearts
AU - Cohen, Omer
AU - Kanana, Hifa
AU - Zoizner, Ronen
AU - Gross, Chaya
AU - Meiri, Uri
AU - Stern, Michael D.
AU - Gerstenblith, Gary
AU - Horowitz, Michal
PY - 2007/7
Y1 - 2007/7
N2 - Heat acclimation (AC) improves cardiac mechanical and metabolic performance. Using cardiomyocytes and isolated hearts from 30-day and 2-day acclimated rats (AC and AC-2d, 34°C), we characterized cellular contractile mechanisms under normothermic (37°C) and hyperthermic (39-42°C) conditions. To determine contractile responses, Ca2+ transients (Ca2+ T), sarcoplasmic reticulum (SR) Ca2+ pool size (fura-2/indo-1 fluorescence), force generation [amplitude systolic motion (ASM)], L-type Ca2+ channels [dihydropyridine receptor (DHPR)], ryanodine receptors (RyRs), and total (PLBt) and phosphorylated phospholamban [serine phosphorylated (PLBs) and theonine phosphorylated (PLBtr)] proteins and transcripts were measured (Western blot, RT-PCR). Cardiac mechanical performance was measured using a Langendorff system. We demonstrated that AC and AC-2d increased Ca2+ T amplitude (148% and 147%, respectively) and twitch force (180% and 130%, respectively) and desensitized myofilaments, as indicated by a rightward shift in the ASM-Ca2+ relationships, despite no change in SR Ca2+ pool size. Hence, generation of higher Ca2+ T underlies greater force development in AC and AC-2d myocytes. In isolated hearts, ryanodine administration eliminated differences between AC and control (C) hearts, implying an important role for RyRs in that acclimation phase. Increased expression of DHPR and RyRs, and decreased PLBs/PLBt in AC hearts only, suggest that different pathways increase force generation in the AC-2d vs. AC myocytes. At basal beating rates, hyperthermia (39-41°C) enhanced pressure generation in AC hearts. C hearts failed to restitute pressure beyond 39°C. Increased beating frequency produced negative inotropic response. In C cardiomyocytes, hyperthermia elevated basal cytosolic Ca2+ and tension, Ca2+ T, and ASM. AC myocytes enhanced Ca2+ T but showed myofilament desensitization, suggesting its involvement in cardiac protection against hyperthermia. Collectively, both Ca2+ turnover and myofilament responsiveness are important adaptive acclimatory targets during normothermic and hyperthermic conditions.
AB - Heat acclimation (AC) improves cardiac mechanical and metabolic performance. Using cardiomyocytes and isolated hearts from 30-day and 2-day acclimated rats (AC and AC-2d, 34°C), we characterized cellular contractile mechanisms under normothermic (37°C) and hyperthermic (39-42°C) conditions. To determine contractile responses, Ca2+ transients (Ca2+ T), sarcoplasmic reticulum (SR) Ca2+ pool size (fura-2/indo-1 fluorescence), force generation [amplitude systolic motion (ASM)], L-type Ca2+ channels [dihydropyridine receptor (DHPR)], ryanodine receptors (RyRs), and total (PLBt) and phosphorylated phospholamban [serine phosphorylated (PLBs) and theonine phosphorylated (PLBtr)] proteins and transcripts were measured (Western blot, RT-PCR). Cardiac mechanical performance was measured using a Langendorff system. We demonstrated that AC and AC-2d increased Ca2+ T amplitude (148% and 147%, respectively) and twitch force (180% and 130%, respectively) and desensitized myofilaments, as indicated by a rightward shift in the ASM-Ca2+ relationships, despite no change in SR Ca2+ pool size. Hence, generation of higher Ca2+ T underlies greater force development in AC and AC-2d myocytes. In isolated hearts, ryanodine administration eliminated differences between AC and control (C) hearts, implying an important role for RyRs in that acclimation phase. Increased expression of DHPR and RyRs, and decreased PLBs/PLBt in AC hearts only, suggest that different pathways increase force generation in the AC-2d vs. AC myocytes. At basal beating rates, hyperthermia (39-41°C) enhanced pressure generation in AC hearts. C hearts failed to restitute pressure beyond 39°C. Increased beating frequency produced negative inotropic response. In C cardiomyocytes, hyperthermia elevated basal cytosolic Ca2+ and tension, Ca2+ T, and ASM. AC myocytes enhanced Ca2+ T but showed myofilament desensitization, suggesting its involvement in cardiac protection against hyperthermia. Collectively, both Ca2+ turnover and myofilament responsiveness are important adaptive acclimatory targets during normothermic and hyperthermic conditions.
KW - Calcium transients
KW - Cardiomyocyte contractility
KW - L-type calcium channel
KW - Phospholamban
KW - Ryanodine receptors
UR - http://www.scopus.com/inward/record.url?scp=34447645852&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.01351.2006
DO - 10.1152/japplphysiol.01351.2006
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 17395755
AN - SCOPUS:34447645852
SN - 8750-7587
VL - 103
SP - 266
EP - 275
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 1
ER -