All fiber sensor array for ultrasound sensing

Haniel Gabai, Idan Steinberg, Avishay Eyal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


The field of Optical Fiber Sensors (OFS) is gaining tremendous popularity in recent years. OFS natural immunity to electromagnetic disturbances, inherent biocompatibility and compactness making them highly attractive for ultrasound sensing. Moreover, their compatibility with photoacoustics can make them useful in situations where traditional piezoelectric probes are inadequate. However, the issue of multiplexing individual OFS into an array remains a challenging and costly task. In this work, we demonstrate a straightforward approach for multiplexing multiple broadband OFS for ultrasound sensing by exploiting most of the photoreceiver's bandwidth. The design is based on a recently developed system in which all sensing elements are connected to a single interrogator and to a single digitizing circuit. To mitigate aliasing, the system employs I/Q coherent detection. Synchronization of the sensor interrogation with the excitation enables very high repetition rates (kHz) making it ideal for applications where imaging of dynamic processes is desired.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2016
EditorsAlexander A. Oraevsky, Lihong V. Wang
ISBN (Electronic)9781628419429
StatePublished - 2016
EventPhotons Plus Ultrasound: Imaging and Sensing 2016 - San Francisco, United States
Duration: 14 Feb 201617 Feb 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferencePhotons Plus Ultrasound: Imaging and Sensing 2016
Country/TerritoryUnited States
CitySan Francisco


  • Optical fiber sensors
  • interferometry
  • multiplexing
  • swept frequency interferometry
  • ultrasound sensing


Dive into the research topics of 'All fiber sensor array for ultrasound sensing'. Together they form a unique fingerprint.

Cite this