TY - JOUR
T1 - Algorithms that transfer between different energy metering methods for simplification of energy trading and unified billing
AU - Calamaro, Netzah
AU - Donko, Moshe
AU - Shmilovitz, Doron
N1 - Publisher Copyright:
© 2022
PY - 2022/12
Y1 - 2022/12
N2 - The paper settles a discrepancy between two smart-metering methods. The issue bears on a billion installed smart meters and $36B electric-energy trading market. The contemporary problem of the energy-metering registration gap between the methods, relates to energy-trading unified-billing, and it will aggravate in the future. A mathematical definition for active and reactive, import/export energy-metering formulas is given for vector/arithmetic common metering models employing energy formulas rather than power, energy being the language of smart metering design/usage/billing. Economic reasoning, difficulty of implementation, and required regulator's flexibility at establishing different import/export tariffs-per different tariff program-types are explained. Innovations in the presented work include: (1) mathematical formulation of metering-methods-definitions that is validated over: one EU organization, twelve major meter manufacturers, twenty model-types, is presented and tested. (2) formulation of drivers for 100% accurate conversion from one method to another is developed. (3) fifteen real-life experiments covering the entire problem spectrum are conducted with new results, discovering new energy/tariff “conservation-rules”, relevant to manufacturers/utility companies/regulators/customers. (4) a correct segmentation of customers to energy/tariff registration-gap is generated. (5) an algebra that is suitable to energy metering/conversion/tariff computation-and-design is presented. (6) research reduces the cost of a contemporary solution by 98%. (6) Advantages/disadvantages of each method are named. (7) scenarios where one of the energy methods may be incorrect are considered-and-rejected. Eleven theorems formulated and proved, and fifteen field test cases covering the entire electricity market. (8) regulators may maintain arithmetic meters, enjoying their added value, and manage precise arithmetic/vector metering using these meters– especially using load profile and potentially satisfying with billing registers.
AB - The paper settles a discrepancy between two smart-metering methods. The issue bears on a billion installed smart meters and $36B electric-energy trading market. The contemporary problem of the energy-metering registration gap between the methods, relates to energy-trading unified-billing, and it will aggravate in the future. A mathematical definition for active and reactive, import/export energy-metering formulas is given for vector/arithmetic common metering models employing energy formulas rather than power, energy being the language of smart metering design/usage/billing. Economic reasoning, difficulty of implementation, and required regulator's flexibility at establishing different import/export tariffs-per different tariff program-types are explained. Innovations in the presented work include: (1) mathematical formulation of metering-methods-definitions that is validated over: one EU organization, twelve major meter manufacturers, twenty model-types, is presented and tested. (2) formulation of drivers for 100% accurate conversion from one method to another is developed. (3) fifteen real-life experiments covering the entire problem spectrum are conducted with new results, discovering new energy/tariff “conservation-rules”, relevant to manufacturers/utility companies/regulators/customers. (4) a correct segmentation of customers to energy/tariff registration-gap is generated. (5) an algebra that is suitable to energy metering/conversion/tariff computation-and-design is presented. (6) research reduces the cost of a contemporary solution by 98%. (6) Advantages/disadvantages of each method are named. (7) scenarios where one of the energy methods may be incorrect are considered-and-rejected. Eleven theorems formulated and proved, and fifteen field test cases covering the entire electricity market. (8) regulators may maintain arithmetic meters, enjoying their added value, and manage precise arithmetic/vector metering using these meters– especially using load profile and potentially satisfying with billing registers.
KW - Algebraic metering method
KW - Smart grid
KW - Smart metering
KW - Vector metering method
UR - http://www.scopus.com/inward/record.url?scp=85144012551&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2022.e11542
DO - 10.1016/j.heliyon.2022.e11542
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36506402
AN - SCOPUS:85144012551
SN - 2405-8440
VL - 8
JO - Heliyon
JF - Heliyon
IS - 12
M1 - e11542
ER -