Algorithmic and analysis techniques in property testing

Research output: Contribution to journalArticlepeer-review


Property testing algorithms are "ultra"-efficient algorithms that decide whether a given object (e.g., a graph) has a certain property (e.g., bipartiteness), or is significantly different from any object that has the property. To this end property testing algorithms are given the ability to perform (local) queries to the input, though the decision they need to make usually concerns properties with a global nature. In the last two decades, property testing algorithms have been designed for many types of objects and properties, amongst them, graph properties, algebraic properties, geometric properties, and more. In this monograph we survey results in property testing, where our emphasis is on common analysis and algorithmic techniques. Among the techniques surveyed are the following: • The self-correcting approach, which was mainly applied in the study of property testing of algebraic properties; • The enforce-and-test approach, which was applied quite extensively in the analysis of algorithms for testing graph properties (in the dense-graphs model), as well as in other contexts; • Szemerédi's Regularity Lemma, which plays a very important role in the analysis of algorithms for testing graph properties (in the dense-graphs model); • The approach of Testing by implicit learning, which implies efficient testability of membership in many functions classes; and • Algorithmic techniques for testing properties of sparse graphs, which include local search and random walks.

Original languageEnglish
Pages (from-to)73-205
Number of pages133
JournalFoundations and Trends in Theoretical Computer Science
Issue number2
StatePublished - 2009


Dive into the research topics of 'Algorithmic and analysis techniques in property testing'. Together they form a unique fingerprint.

Cite this