TY - JOUR
T1 - Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses
AU - Berg, Michael G.
AU - Olivo, Ana
AU - Forberg, Kenn
AU - Harris, Barbara J.
AU - Yamaguchi, Julie
AU - Shirazi, Rachel
AU - Gozlan, Yael
AU - Sauleda, Silvia
AU - Kaptue, Lazare
AU - Rodgers, Mary A.
AU - Mor, Orna
AU - Cloherty, Gavin A.
N1 - Publisher Copyright:
© 2020 Berg et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/7
Y1 - 2020/7
N2 - Defining genetic diversity of viral infections directly from patient specimens is the ultimate goal of surveillance. Simple tools that can provide full-length sequence information on blood borne viral hepatitis viruses: hepatitis C, hepatitis B and hepatitis D viruses (HCV, HBV and HDV) remain elusive. Here, an unbiased metagenomic next generation sequencing approach (mNGS) was used for molecular characterization of HCV infections (n = 99) from Israel which yielded full-length HCV sequences in 89% of samples, with 7 partial sequences sufficient for classification. HCV genotypes were primarily 1b (68%) and 1a (19%), with minor representation of genotypes 2c (1%) and 3a (8%). HBV/HDV coinfections were characterized by suppressed HBV viral loads, resulting in sparse mNGS coverage. A probe-based enrichment approach (xGen) aiming to increase HBV and HDV coverage was validated on a panel of diverse genotypes, geography and titers. The method extended HBV genome coverage a median 61% (range 8–84%) and provided orders of magnitude boosts in reads and sequence depth for both viruses. When HBV-xGen was applied to Israeli samples, coverage was improved by 28–73% in 4 samples and identified HBV genotype A1, A2, D1 specimens and a dual B/D infection. Abundant HDV reads in mNGS libraries yielded 18/26 (69%) full genomes and 8 partial sequences, with HDV-xGen only providing minimal extension (3–11%) of what were all genotype 1 genomes. Advanced molecular approaches coupled to virus-specific capture probes promise to enhance surveillance of viral infections and aid in monitoring the spread of local subtypes.
AB - Defining genetic diversity of viral infections directly from patient specimens is the ultimate goal of surveillance. Simple tools that can provide full-length sequence information on blood borne viral hepatitis viruses: hepatitis C, hepatitis B and hepatitis D viruses (HCV, HBV and HDV) remain elusive. Here, an unbiased metagenomic next generation sequencing approach (mNGS) was used for molecular characterization of HCV infections (n = 99) from Israel which yielded full-length HCV sequences in 89% of samples, with 7 partial sequences sufficient for classification. HCV genotypes were primarily 1b (68%) and 1a (19%), with minor representation of genotypes 2c (1%) and 3a (8%). HBV/HDV coinfections were characterized by suppressed HBV viral loads, resulting in sparse mNGS coverage. A probe-based enrichment approach (xGen) aiming to increase HBV and HDV coverage was validated on a panel of diverse genotypes, geography and titers. The method extended HBV genome coverage a median 61% (range 8–84%) and provided orders of magnitude boosts in reads and sequence depth for both viruses. When HBV-xGen was applied to Israeli samples, coverage was improved by 28–73% in 4 samples and identified HBV genotype A1, A2, D1 specimens and a dual B/D infection. Abundant HDV reads in mNGS libraries yielded 18/26 (69%) full genomes and 8 partial sequences, with HDV-xGen only providing minimal extension (3–11%) of what were all genotype 1 genomes. Advanced molecular approaches coupled to virus-specific capture probes promise to enhance surveillance of viral infections and aid in monitoring the spread of local subtypes.
UR - http://www.scopus.com/inward/record.url?scp=85088215982&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0236046
DO - 10.1371/journal.pone.0236046
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32678844
AN - SCOPUS:85088215982
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 7 July
M1 - e0236046
ER -