TY - JOUR
T1 - Adipokinetic hormone and flight fuel related characteristics of density-dependent locust phase polymorphism
T2 - A review
AU - Pener, M. P.
AU - Ayali, Amir
AU - Golenser, Esther
N1 - Funding Information:
The research reported by Ayali and Pener [3, 4] , as well as by Ayali et al. [5, 6, 8] was supported by grant no. 89-00129 from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel.
PY - 1997
Y1 - 1997
N2 - Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.
AB - Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.
KW - Adipokinetic hormones
KW - Adipokinetic responses
KW - Carbohydrates
KW - Flight fuels
KW - Lipids
KW - Locusts
KW - Migration
KW - Phase polymorphism
UR - http://www.scopus.com/inward/record.url?scp=0030759166&partnerID=8YFLogxK
U2 - 10.1016/S0305-0491(97)00187-9
DO - 10.1016/S0305-0491(97)00187-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0030759166
SN - 0305-0491
VL - 117
SP - 513
EP - 524
JO - Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology
JF - Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology
IS - 4
ER -