Adiabatic theorem for non-Hermitian time-dependent open systems

Avner Fleischer*, Nimrod Moiseyev

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


In the conventional quantum mechanics (i.e., Hermitian quantum mechanics) the adiabatic theorem for systems subjected to time-periodic fields holds only for bound systems and not for open ones (where ionization and dissociation take place) [D. W. Hone, R. Ketzmerik, and W. Kohn, Phys. Rev. A 56, 4045 (1997)]. Here with the help of the (t,t′) formalism combined with the complex scaling method we derive an adiabatic theorem for open systems and provide an analytical criterion for the validity of the adiabatic limit. The use of the complex scaling transformation plays a key role in our derivation. As a numerical example we apply the adiabatic theorem we derived to a one-dimensional model Hamiltonian of Xe atom which interacts with strong, monochromatic sine-square laser pulses. We show that the generation of odd-order harmonics and the absence of hyper-Raman lines, even when the pulses are extremely short, can be explained with the help of the adiabatic theorem we derived.

Original languageEnglish
Article number032103
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number3
StatePublished - Sep 2005
Externally publishedYes


Dive into the research topics of 'Adiabatic theorem for non-Hermitian time-dependent open systems'. Together they form a unique fingerprint.

Cite this